resin core
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Trung Thanh Nguyen ◽  
Quynh Anh Nguyen Thi ◽  
Ngoc Hang Le ◽  
Nhat Huy Nguyen

AbstractThis study reports for the first time on the synthesis of novel resin@P-Ag2O material and its application for reducing the chloride effect on COD determination of high salinity water. This engineered core–shell nanomaterial with cationic ion exchange resin core and porous Ag2O shell was prepared by facile ion exchange and silver oxidation method at ambient temperature without using toxic chemicals. The material was characterized by FTIR, XRD, SEM, and SEM–EDX mapping. In the chloride removal test, this material gave a high adsorption capacity of ca. 244 mgCl/gAg at the mild condition with high durability after several adsorption–desorption cycles. Moreover, resin@P-Ag2O was applied for removing chloride in water to improve the accuracy of the SMEWW 5220C:2012 method for COD determination of high salinity water. The result showed that the COD of a water sample with salt content after being treated by the material had a low error (≤ 10%) as compared to the sample without salt. Meanwhile, the COD of salty water measured by the dilution method had an error of around 15%. These results indicate that resin@P-Ag2O material has a very potential application for chloride removal and COD determination of high salinity water.


Author(s):  
Mami Higashi ◽  
Atsushi Mine ◽  
Mariko Matsumoto ◽  
Masahiro Yumitate ◽  
Ryosuke Hagino ◽  
...  

2020 ◽  
Author(s):  
J Jung ◽  
BD Roh ◽  
JH Kim ◽  
Y Shin

Clinical Relevance Various core materials with different shades affect the final color of high-translucency monolithic zirconia restorations. The blue core shows the greatest color difference in final zirconia restorations followed by metal, A3 dentin-shade resin core, and white core.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2947
Author(s):  
Masao Irie ◽  
Yukinori Maruo ◽  
Goro Nishigawa ◽  
Kumiko Yoshihara ◽  
Takuya Matsumoto

The aims of this study were to investigate the effects of root dentin shear bond strength and pull-out force of resin core build-up materials on flexural strength immediately after setting, after one-day water storage, and after 20,000 thermocycles. Eight core build-up and three luting materials were investigated, using 10 specimens (n = 10) per subgroup. At three time periods—immediately after setting, after one-day water storage, and after 20,000 thermocycles, shear bond strengths to root dentin and pull-out forces were measured. Flexural strengths were measured using a 3-point bending test. For all core build-up and luting materials, the mean data of flexural strength, shear bond strength and pull-out force were the lowest immediately after setting. After one-day storage, almost all the materials yielded their highest results. A weak, but statistically significant, correlation was found between flexural strength and shear bond strength (r = 0.508, p = 0.0026, n = 33). As the pull-out force increased, the flexural strength of core build-up materials also increased (r = 0.398, p = 0.0218, n = 33). Multiple linear regression analyses were conducted using these three independent factors of flexural strength, pull-out force and root dentin shear bond strength, which showed this relationship: Flexural strength = 3.264 × Shear bond strength + 1.533 × Pull out force + 10.870, p = 0.002). For all the 11 core build-up and luting materials investigated immediately after setting, after one-day storage and after 20,000 thermocycles, their shear bond strengths to root dentin and pull-out forces were correlated to the flexural strength in core build-up materials. It was concluded that the flexural strength results of the core build-up material be used in research and quality control for the predictor of the shear bond strength to the root dentin and the retentive force of the post.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
WooCheol Lee ◽  
Yeon-Jee Yoo

Abstract Background Strain distribution was investigated to assess the occlusal resistance alterations in immature teeth under different occlusal force. Methods In vitro apexification models of teeth with a funnel-shaped immature apex were obturated with mineral trioxide aggregate (MTA; ProRoot MTA) using different combinations of core materials (10/group): group 1, full-length orthograde obturation of MTA; group 2, a 5-mm MTA apical plug with a composite core; group 3, a 5-mm MTA apical plug and back-filling with warm gutta-percha. Teeth with calcium hydroxide (CH)-medicated canals and untreated teeth with normal apices were tested as controls. The teeth were arranged between two adjacent normal-apex teeth, embedded in a resin mold with a simulated periodontal ligament space. Strain data were recorded from the 3-unit teeth assembly under static compressive occlusal forces (50, 100, 200, and 300 N). Measurements were repeated 20 times for each condition, and the data were statistically analyzed. Results The immature teeth showed altered occlusal force resistance, placing increased strain on adjacent teeth. Teeth with CH-medicated canals showed significantly inferior occlusal resistance under all tested forces (P < 0.05). Application of an MTA plug with deep composite resin core resulted in significantly better stress-bearing capacity especially under forces of 50 and 300 N (P < 0.05). Conclusions The pattern of occlusal force distribution in immature teeth differed according to the canal obturation materials used for apexification. Immature teeth with an MTA apical plug showed more favorable occlusal force resistance than those with CH-medicated canals.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2366 ◽  
Author(s):  
Xiaoxing Yan ◽  
Yu Tao ◽  
Xingyu Qian

Microcapsules were prepared by in situ polymerization with urea formaldehyde resin as the wall material and Dulux waterborne acrylic acid as the core material. The effects of the core–wall ratio, water bath temperature and depositing time on the morphology, particle size, yield and encapsulation ratio of microcapsules were investigated by orthogonal experiment of three factors and two levels. The results showed that the core–wall ratio had the greatest influence on the performance of microcapsules. When the core–wall ratio was 0.58:1, the water bath temperature was 70 °C, and the depositing time was 5 d, the microcapsule performance was the best. With the increase in depositing time, the yield of microcapsule particles increased gradually, and the microcapsules appeared to show an adhesive phenomenon. However, the long-term depositing time did not lead to complete deposition and agglomeration of microcapsules. When 10.0% concentration of the waterborne acrylic microcapsules with 0.58:1 of core–wall ratio was added to the coatings, the mechanical and optical properties of the coatings did not decrease significantly, but the elongation at break increased significantly. Therefore, this study offers a new prospect for using waterborne acrylic microcapsules to improve the toughness of waterborne paint film which can be cured at room temperature on a wood surface.


Sign in / Sign up

Export Citation Format

Share Document