Secondary pollen presentation: more than to increase pollen transfer precision

Author(s):  
Yuanqing Xu ◽  
Zhonglai Luo ◽  
Jia Wang ◽  
Nancai Pei ◽  
Dianxiang Zhang
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7066
Author(s):  
Shanlin Yang ◽  
Guangming Chu ◽  
Xiang Shi ◽  
Shaoming Wang

Secondary pollen presentation (SPP) is a reproductive strategy that enhances the efficiency of pollen transfer, which has been explored for more than 200 years, resulting in 10 identified types of SPP. The ephemeral plant Hypecoum erectum L. (Papaveraceae) has an elaborate petal structure. The middle lobe is a key functional organ in SPP. To explore the importance of the middle lobe structure, we measured the flowering process, the curling movement and growth of the middle lobe, pollination characteristics, pollination efficiency, and the mating system in H. erectum in the field. The yellow middle lobe structure had an important role in attracting pollinators. The middle lobes on the inner petals function as a redundant cucullate structure and wrapped about 84% of the total pollen grains as soon as the anthers dehisced. These then grew upward and gradually presented pollen to pollinators via the roll out of the middle lobes. One bee species, Colletes vestitus from Colletidae, was the only effective pollinator of H. erectum. The SPP mechanism increased the efficiency of pollen transfer by C. vestitus. The middle lobes, which wrapped pollen and grew upward, contacted the stigma and provided an advantage for self-pollination and outcrossing by growing upward higher than the corolla. Hypecoum erectum L. has a mixed mating system with selfing and outcrossing. Thus, the SPP mechanism plays a key role during the pollination process and is necessary for improving pollination efficiency and promoting reproductive success.


2018 ◽  
Vol 24 (4) ◽  
pp. 451-458
Author(s):  
Talita Oliveira Nascimento ◽  
Patricia Campos Silva ◽  
Vivian Loges ◽  
Sandra Mariotto ◽  
Willian Krause ◽  
...  

The secondary presentation of pollen consists of a foral mechanism where the presentation of pollen occurs in other foral structures in addition to the anther, in order to increase the precision of the dispersion of the pollen by the vectors. This study aims to describe the temporal dynamics of secondary pollen presentation, and morphological and morphometric characteristics in stages of pre- anthesis and anthesis in genotypes of fve natural Heliconia psittacorum populations. For the study of foral morphometry traits of length of the fower, stamen, stigma and height of flament insertion in the petal in bud and fower were measured. The foral morphology of pre-anthesis buds and fowers in anthesis, the presence or absence of characteristics such as herkogamy, region of flament insertion in the petal, region of stylar hairs, and of secondary pollen deposition were evaluated. Treatments of controlled pollinations, self-pollination, geitonogamy, cross-pollination, natural pollination and growth to pollen tube were sampled. Floral herkogamy and pollen transfer to the adhered hairs in the stylar region were clearly observed during anthesis, constituting the frst record of occurrence of secondary pollen presentation in Heliconiaceae. Pollen tube growth was inhibited in the stigmatic, style and basal regions of the pistil. Natural fruiting produced little or no fruit. The positioning of the stamens above the stigma, pollen viability and stigma receptivity during anthesis of H. psittacorum fowers may favor self-pollination. The stylar hairs observed in all H. psittacorum populations’ help in the retention of pollen grains. The low fruiting rate in controlled and natural pollinations suggest that the main propagation form of H. psittacorum in the study areas is based on asexual reproduction.


1993 ◽  
Vol 41 (5) ◽  
pp. 417 ◽  
Author(s):  
GJ Howell ◽  
AT Slater ◽  
RB Knox

Secondary pollen presentation is the developmental relocation of pollen from the anthers onto another floral organ which then functions as the pollen presenting organ for pollination. Nine different types have been identified in sixteen angiosperm families according to which organ is used for presentation, whether the pollen is exposed or concealed within a structure and how pollen is loaded onto the presenting surface: (1) Enveloping bloom presenters (Araceae); (2) Perianth presenters with exposed pollen presentation (Epacridaceae); (3) Androecial presenters (Santalaceae); (4) Terminal stylar presenters with passive pollen placement and concealed stigmas (Rubiaceae and Proteaceae); (5) Terminal stylar presenters with passive pollen placement and sub-terminal stigmas (Marantaceae and Polygalaceae); (6) Terminal stylar presenters with active pollen placement (Asteraceae, Calyceraceae and Lobeliaceae); (7) Sub-terminal stylar presenters (Campanulaceae, Cannaceae, Fabaceae and Myrtaceae); (8) Exposed stigmatic presenters (Rubiaceae); (9) Indusial stigmatic presenters (Goodeniaceae and Brunoniaceae). Secondary pollen presentation occurs in three monocotyledon and thirteen dicotyledon families. The presentation types appear to have been independently derived indicating that secondary pollen presentation is a character with a selective advantage. In all but the enveloping bloom type of secondary pollen presentation, developmental relocation of pollen requires simultaneous, introrse anther dehiscence and a close association of the presenting organ to the anthers prior to anthesis. The various secondary pollen presentation systems may be modified to promote xenogamy or autogamy and this can even change during anthesis. Most plants which have secondary pollen presentation, display reduced herkogamy within the flower to facilitate pollination. Increased risk of self-pollination due to this may be overcome through dichogamy, herkogamy within inflorescences, dry stigmas, self-incompatibility systems and passive or active control over pollinator behaviour. Enhanced male function of the flowers of secondary pollen presenting plants is also evident through extension of the male phase by the protection, controlled release and precise placement and receipt of pollen. Plants displaying secondary pollen presentation are almost always protandrous.


Flora ◽  
2012 ◽  
Vol 207 (12) ◽  
pp. 895-902 ◽  
Author(s):  
Hua Lin ◽  
Xuli Fan ◽  
Xiang Zhou ◽  
Jiangyun Gao

Sign in / Sign up

Export Citation Format

Share Document