mixed mating
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 46)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Kana Masuda ◽  
Atushi Ushimaru

Theory predicts that prior self-pollination (prior selfing) should not evolve in mixed mating species that enable delayed selfing. In this study, we test the hypotheais that prior selfing has evolved under severe pollinator limitation in the mixed mating species Commelina communis which can reproduce via delayed selfing. The hypothesis predicts that prior selfing occurs more frequently in populations with very low pollinator availability and/or in smaller flowers which receive infrequent visitations. We tested the predictions by comparing the degree of prior selfing among ten populations experiencing various levels of pollinator limitation and by examining a relationship between individual flower size and the occurrence of prior selfing. Populations with higher pollinator availability had higher prior selfing rate. Moreover, prior selfing occurs more frequently in larger flowers. These findings were totally opposite patterns of the predictions and the previous findings. We proposed new hypotheses that prior selfing has been maintained by the presence of reproductive interference from the congener and/or propotency in C. communis to explain our unexpected findings. We should verify potential effects of reproductive interference and propotency in future to elucidate the mystery of prior selfing in this mixed mating species with delayed selfing.


2021 ◽  
Vol 2 ◽  
Author(s):  
Malin Undin ◽  
Peter J. Lockhart ◽  
Simon F. K. Hills ◽  
Doug P. Armstrong ◽  
Isabel Castro

Reinforcement translocations are increasingly utilised in conservation with the goal of achieving genetic rescue. However, concerns regarding undesirable results, such as genetic homogenisation or replacement, are widespread. One factor influencing translocation outcomes is the rate at which the resident and the introduced individuals interbreed. Consequently, post-release mate choice is a key behaviour to consider in conservation planning. Here we studied mating, and its consequences for genomic admixture, in the North Island brown kiwi Apteryx mantelli population on Ponui Island which was founded by two translocation events over 50 years ago. The two source populations used are now recognised as belonging to two separate management units between which birds differ in size and are genetically differentiated. We examined the correlation between male and female morphometrics for 17 known pairs and quantified the relatedness of 20 pairs from this admixed population. In addition, we compared the genetic similarity and makeup of 106 Ponui Island birds, including 23 known pairs, to birds representing the source populations for the original translocations. We found no evidence for size-assortative mating. On the contrary, genomic SNP data suggested that kiwi of one feather did not flock together, meaning that mate choice resulted in pairing between individuals that were less related than expected by random chance. Furthermore, the birds in the current Ponui Island population were found to fall along a gradient of genomic composition consistent with non-clustered representation of the two parental genomes. These findings indicate potential for successful genetic rescue in future Apteryx reinforcement translocations, a potential that is currently under utilised due to restrictive translocation policies. In light of our findings, we suggest that reconsideration of these policies could render great benefits for the future diversity of this iconic genus in New Zealand.


2021 ◽  
Vol 15 (1) ◽  
pp. 183-199
Author(s):  
George Rogers

Stillingia aquatica, a wetland shrub in the Southeastern U.S., was profiled in Southeast Florida from a natural history standpoint. The stem has exceptionally lightweight wood in common with other periodically root-inundated woody plants. Pseudowhorled tufts of conspicuous yellow leaves subtend the similarly colored spikelike thyrsoid inflorescences. The plants are monoecious, self-compatible, protogynous with respect to inflorescences, and with a mixed mating system. After a pistillate-only phase, pistillate and staminate phases overlap in time, and are positioned in close physical proximity within inflorescences. Then follows a prolonged phase of only staminate flowers plus maturing fruits. The inflorescences attract ants, bees, and especially abundant wasps, switching from mixed bees and wasps in the dry season to essentially just wasps in the wet season. Wind-pollination is minimal to none. Ants are often abundant in the inflorescences and believed to contribute to geitonogamy but are not necessary for fruitset. Agamospermy is none to negligible. The seeds often fail, with the failure rates varying between populations and between individual plants.


2021 ◽  
Author(s):  
Luis O. Portillo Lemus ◽  
Maryline Harang ◽  
Michel Bozec ◽  
Jacques Haury ◽  
Solenn Stoeckel ◽  
...  

Mating system influences local population genetic structure, effective size, offspring fitness and functional variation. Determining the respective importance of self- and cross-fertilization in hermaphroditic flowering plants is thus important to understand their ecology and evolution. The worldwide invasive species, Ludwigia grandiflora subsp. hexapetala (Lgh) presents two floral morphs: one self-compatible short-styled morph (S-morph) and one self-incompatible long-styled morph (L-morph). Most invasive populations worldwide are only composed of self-incompatible L-morphs, which questions the importance of sexual reproduction during the invasion. In this study, we identified the mating systems of western European experimental and natural populations of Lgh by comparing structural characteristics of pollen and style, by studying self- and cross-pollen tube elongations and the viability of the resulting seeds and seedlings in both morphs. Our results showed no differences in pollen shape and stigma surfaces among and between the two floral morphs. In the self-incompatible L-morph flowers, self-pollen tubes were stopped tardily, in the ovarian area, and were unable to fertilize the ovules. This first formal identification of a late-acting, prezygotic self-incompatible system in Ludwigia genus questions on the distribution of this mating system in the Myrtales order. In the self-compatible S-morph flowers, rarer in worldwide invasive populations, self-pollen always succeeded to self-fertilize the ovules that nearly all developed into viable seedlings. However, cross-pollen tubes always elongated faster than self-pollen tubes. S-morph individuals may thus advantage preferential allogamy over selfing when cross-pollen is available despite its self-compatibility. As expected in late-acting self-incompatible systems, L-morph flowers authorised 0.2‰ of selfed seeds during the uppermost flowering season, that increased to 1‰ at the end of the flowering season. Such delayed selfing resulting in a significant quantity of viable floating seeds may contribute to the local regeneration, seed bank and propagation of the L-morph, which may explain its invasion success worldwide. Management plans of Lgh would gain to consider the mixed mating system we identified.


2021 ◽  
pp. 110849
Author(s):  
Sviatoslav Rybnikov ◽  
Daniel B. Weissman ◽  
Sariel Hübner ◽  
Abraham B. Korol

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10579
Author(s):  
Juliana Massimino Feres ◽  
Alison G. Nazareno ◽  
Leonardo M. Borges ◽  
Marcela Corbo Guidugli ◽  
Fernando Bonifacio-Anacleto ◽  
...  

Anadenanthera (Fabaceae) is endemic to the Neotropics and consists of two tree species: A. colubrina (Vell.) Brenan and A. peregrina (L.) Speg. This study examined the mating system and contemporary gene flow of A. colubrina (Acol) and A. peregrina (Aper) in a highly fragmented area of the Atlantic Forest to provide valuable information that informs conservation strategies. Reproductive adults from forest remnants [nA. colubrina = 30 (2.7 ha), nA. peregrina = 55 (4.0 ha)] and progeny-arrays (nA. colubrina = 322, nA. peregrina = 300) were genotyped for seven nuclear microsatellite markers. Mating system analyses revealed that A. colubrina is a mixed mating species (tm = 0.619) while A. peregrina is a predominantly outcrossing species (tm = 0.905). For both Anadenanthera species, high indices of biparental inbreeding were observed (Acol = 0.159, Aper = 0.216), resulting in low effective pollination neighborhood sizes. Categorical paternity analysis revealed different scales of pollen dispersal distance: the majority of crossings occurring locally (i.e., between nearby trees within the same population), with moderate pollen dispersal coming from outside the forest fragments boundaries (Acolmp = 30%, Apermp = 35%). Nevertheless, pollen immigration from trees outside the populations for both species suggests that the populations are not reproductively isolated. This study highlights the importance of evaluating both mating system and contemporary gene flow for a better understanding of the biology of Anadenanthera species. This information should be considered to ensure the effective conservation and management practices of these plant species.


2021 ◽  
Author(s):  
Jennifer D. Gresham ◽  
Ryan L. Earley

AbstractMixed mating strategies offer the benefits of both self-fertilizing one’s own eggs (selfing) and outcrossing, while limiting the costs of both methods. The economics of mixed mating is further determined by individual self-compatibility. In gynodioecious (hermaphrodites, females) and androdioecious (hermaphrodites, males) species, the level of self-compatibility of the hermaphrodites also acts as a selection pressure on the fitness of the other sex. Mangrove rivulus fish populations are comprised of selfing hermaphrodites and males that result from hermaphrodites changing sex. Although hermaphrodites overwhelmingly reproduce through internal selfing, they occasionally oviposit unfertilized eggs. Males can externally fertilize these eggs. Here, we reveal that fecundity and self-compatibility varies within individuals across ontogeny until about 365 days post hatch, and among individuals derived from lineages that vary in their propensity to change sex. Hermaphrodites from high sex changing lineages were significantly less fecund and self-compatible than hermaphrodites from low sex changing lineages. These differences in self-compatibility and fecundity have the potential to drive evolutionary changes on mating strategy and the fitness of males in populations of the mangrove rivulus. This study also illustrates the importance of including lineage variation when estimating the costs and benefits of mixed mating strategies.


2021 ◽  
Author(s):  
Jennifer D Gresham ◽  
Ryan L Earley

AbstractMixed mating, a reproduction strategy utilized by many plants and invertebrates, optimizes the cost to benefit ratio of a labile mating system. One type of mixed mating includes outcrossing with conspecifics and self-fertilizing one’s own eggs. The mangrove rivulus fish (Kryptolebias marmoratus)is one of two vertebrates known to employ both self-fertilization (selfing) and outcrossing. Variation in rates of outcrossing and selfing within and among populations produces individuals with diverse levels of heterozygosity. I designed an experiment to explore the consequences of variable heterozygosity across four ecologically relevant conditions of salinity and water availability (10‰, 25‰, and 40‰ salinity, and twice daily tide changes). I report a significant increase in mortality in the high salinity (40‰) treatment. I also report significant effects on fecundity measures with increasing heterozygosity. The odds of laying eggs decreased with increasing heterozygosity across all treatments, and the number of eggs laid decreased with increasing heterozygosity in the 10‰ and 25‰ treatments. Increasing heterozygosity also was associated with a reduction liver mass and body condition in all treatments. My results highlight the fitness challenges that accompany living in mangrove forests ecosystem and provide the first evidence for outbreeding depression on reproductive and condition-related traits.


Author(s):  
Sondra Turjeman ◽  
Ron Chen ◽  
Ran Nathan

Abstract The Eurasian Jackdaw is thought to be archetypically monogamous, but recent tagging research uncovered extra-pair copulations in the species. Here we examined extra-pair paternity (genetic monogamy) in Eurasian jackdaws breeding in the Judean Hills, Israel, at the global edge of the species range, using a set of highly polymorphic molecular microsatellites. We found roughly a sixth of nests sampled showed deviations from monogamy, more than previously found in DNA fingerprinting studies of jackdaws, suggesting a mixed mating strategy in this population. These findings support the trend of extra-pair paternity in avian species, even when social monogamy remains the rule, and highlight the importance of continued study of species throughout their geographical range.


Sign in / Sign up

Export Citation Format

Share Document