Neuropeptide Y restores non-receptor-mediated vasoconstrictive action in superior mesenteric arteries in portal hypertension

2015 ◽  
Vol 35 (12) ◽  
pp. 2556-2563 ◽  
Author(s):  
Johannes Hartl ◽  
Peter Dietrich ◽  
Lukas Moleda ◽  
Martina Müller-Schilling ◽  
Reiner Wiest
2006 ◽  
Vol 44 (3) ◽  
pp. 512-519 ◽  
Author(s):  
Reiner Wiest ◽  
Lars Jurzik ◽  
Lukas Moleda ◽  
Matthias Froh ◽  
Bernd Schnabl ◽  
...  

2005 ◽  
Vol 289 (4) ◽  
pp. H1436-H1441 ◽  
Author(s):  
Toshishige Shibamoto ◽  
Sen Cui ◽  
Zonghai Ruan ◽  
Wei Liu ◽  
Hiromichi Takano ◽  
...  

We determined the roles of liver and splanchnic vascular bed in anaphylactic hypotension in anesthetized rats and the effects of anaphylaxis on hepatic vascular resistances and liver weight in isolated perfused rat livers. In anesthetized rats sensitized with ovalbumin (1 mg), an intravenous injection of 0.6 mg ovalbumin caused not only a decrease in systemic arterial pressure from 120 ± 9 to 43 ± 10 mmHg but also an increase in portal venous pressure that persisted for 20 min after the antigen injection (the portal hypertension phase). The elimination of the splanchnic vascular beds, by the occlusions of the celiac and mesenteric arteries, combined with total hepatectomy attenuated anaphylactic hypotension during the portal hypertension phase. For the isolated perfused rat liver experiment, the livers derived from sensitized rats were hemoperfused via the portal vein at a constant flow. Using the double-occlusion technique to estimate the hepatic sinusoidal pressure, presinusoidal ( Rpre) and postsinusoidal ( Rpost) resistances were calculated. An injection of antigen (0.015 mg) caused venoconstriction characterized by an almost selective increase in Rpre rather than Rpost and liver weight loss. Taken together, these results suggest that liver and splanchnic vascular beds are involved in anaphylactic hypotension presumably because of anaphylactic presinusoidal contraction-induced portal hypertension, which induced splanchnic congestion resulting in a decrease in circulating blood volume and thus systemic arterial hypotension.


Gut ◽  
2011 ◽  
Vol 60 (8) ◽  
pp. 1122-1132 ◽  
Author(s):  
L. Moleda ◽  
J. Trebicka ◽  
P. Dietrich ◽  
E. Gabele ◽  
C. Hellerbrand ◽  
...  

2003 ◽  
Vol 124 (4) ◽  
pp. A75-A76 ◽  
Author(s):  
Reiner Wiest ◽  
Lars Jurzik ◽  
Christoph Paetzel ◽  
Stefan Feuerbach ◽  
Juergen Schoelmerich ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Zhifeng Zhao ◽  
Chihao Zhang ◽  
Jiayun Lin ◽  
Lei Zheng ◽  
Hongjie Li ◽  
...  

Background: 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl) -benzenesulfonamide (PTUPB), a dual cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) inhibitor, was found to alleviate renal, pulmonary fibrosis and liver injury. However, few is known about the effect of PTUPB on liver cirrhosis. In this study, we aimed to explore the role of PTUPB in liver cirrhosis and portal hypertension (PHT).Method: Rat liver cirrhosis model was established via subcutaneous injection of carbon tetrachloride (CCl4) for 16 weeks. The experimental group received oral administration of PTUPB (10 mg/kg) for 4 weeks. We subsequently analyzed portal pressure (PP), liver fibrosis, inflammation, angiogenesis, and intra- or extrahepatic vascular remodeling. Additionally, network pharmacology was used to investigate the possible mechanisms of PTUPB in live fibrosis.Results: CCl4 exposure induced liver fibrosis, inflammation, angiogenesis, vascular remodeling and PHT, and PTUPB alleviated these changes. PTUPB decreased PP from 17.50 ± 4.65 to 6.37 ± 1.40 mmHg, reduced collagen deposition and profibrotic factor. PTUPB alleviated the inflammation and bile duct proliferation, as indicated by decrease in serum interleukin-6 (IL-6), liver cytokeratin 19 (CK-19), transaminase, and macrophage infiltration. PTUPB also restored vessel wall thickness of superior mesenteric arteries (SMA) and inhibited intra- or extrahepatic angiogenesis and vascular remodeling via vascular endothelial growth factor (VEGF), von Willebrand factor (vWF), etc. Moreover, PTUPB induced sinusoidal vasodilation by upregulating endothelial nitric oxide synthase (eNOS) and GTP-cyclohydrolase 1 (GCH1). In enrichment analysis, PTUPB engaged in multiple biological functions related to cirrhosis, including blood pressure, tissue remodeling, immunological inflammation, macrophage activation, and fibroblast proliferation. Additionally, PTUPB suppressed hepatic expression of sEH, COX-2, and transforming growth factor-β (TGF-β).Conclusion: 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)- benzenesulfonamide ameliorated liver fibrosis and PHT by inhibiting fibrotic deposition, inflammation, angiogenesis, sinusoidal, and SMA remodeling. The molecular mechanism may be mediated via the downregulation of the sEH/COX-2/TGF-β.


2020 ◽  
Vol 73 ◽  
pp. S29
Author(s):  
Cristina Ortiz ◽  
Sabine Klein ◽  
Winfried Reul ◽  
Fernando Magdaleno ◽  
Stefanie Gröschl ◽  
...  

1991 ◽  
Vol 261 (3) ◽  
pp. H683-H690 ◽  
Author(s):  
H. Kawasaki ◽  
C. Nuki ◽  
A. Saito ◽  
K. Takasaki

The effect of neuropeptide Y (NPY) in neurotransmission of calcitonin gene-related peptide (CGRP)-containing vasodilator nerves was investigated in rats. In perfused mesenteric vascular beds with active tone, perivascular nerve stimulation (PNS; 1-8 Hz) caused a frequency-dependent vasodilator response, which was abolished by 300 nM tetrodotoxin (TTX), 500 nM capsaicin, 1 microM human CGRP-(8-37), or cold storage denervation (4 degrees C for 72 h). NPY (5, 10, and 50 nM) concentration dependently inhibited the vasodilator response to PNS, whereas NPY had little effect on vasodilation induced by exogenous CGRP (10 and 100 pmol) or 1 nmol acetylcholine (ACh). NPY (10 nM) inhibited the neurogenic release of CGRP-like immunoreactivity induced by PNS (4 and 8 Hz), which was abolished by 300 nM TTX and the removal of Ca2+ from the medium. Combined perfusion with 5 nM NPY and 10 nM norepinephrine additively inhibited the vasodilator response to PNS but not to exogenous CGRP and ACh. Immunohistochemistry showed the distinct distribution of CGRP- and NPY-like immunoreactivity-containing fibers in rat mesenteric arteries. These results suggest that NPY modulates presynaptically the release of CGRP from CGRP-containing vasodilator nerves in rat mesenteric arteries.


Sign in / Sign up

Export Citation Format

Share Document