y1 receptor
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 40)

H-INDEX

49
(FIVE YEARS 6)

2021 ◽  
pp. 101413
Author(s):  
Chieh-Hsin Yang ◽  
Danise Ann-Onda ◽  
Xuzhu Lin ◽  
Stacey Fynch ◽  
Shaktypreya Nadarajah ◽  
...  

2021 ◽  
Vol 22 (18) ◽  
pp. 10142
Author(s):  
Johannes Kornhuber ◽  
Iulia Zoicas

Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We previously showed that intracerebroventricular administration of NPY reduces the expression of social fear in a mouse model of social fear conditioning (SFC) and localized these effects to the dorsolateral septum (DLS) and central amygdala (CeA). In the present study, we aimed to identify the receptor subtypes that mediate these local effects of NPY. We show that NPY (0.1 nmol/0.2 µL/side) reduced the expression of SFC-induced social fear in a brain region- and receptor-specific manner in male mice. In the DLS, NPY reduced the expression of social fear by acting on Y2 receptors but not on Y1 receptors. As such, prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μL/side) but not the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μL/side) blocked the effects of NPY in the DLS. In the CeA, however, BIBO3304 trifluoroacetate but not BIIE0246 blocked the effects of NPY, suggesting that NPY reduced the expression of social fear by acting on Y1 receptors but not Y2 receptors within the CeA. This study suggests that at least two distinct receptor subtypes are differentially recruited in the DLS and CeA to mediate the effects of NPY on the expression of social fear.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiao Lv ◽  
Feng Gao ◽  
Tuo Peter Li ◽  
Peng Xue ◽  
Xiao Wang ◽  
...  

The central nervous system regulates activity of peripheral organs through interoception. In our previous study, we have demonstrated that PGE2/EP4 skeleton interception regulate bone homeostasis. Here, we show that ascending skeleton interoceptive signaling downregulates expression of hypothalamic neuropeptide Y (NPY) and induce lipolysis of adipose tissue for osteoblastic bone formation. Specifically, the ascending skeleton interoceptive signaling induces expression of small heterodimer partner-interacting leucine zipper protein (SMILE) in the hypothalamus. SMILE binds to pCREB as a transcriptional heterodimer on Npy promoters to inhibit NPY expression. Knockout of EP4 in sensory nerve increases expression of NPY causing bone catabolism and fat anabolism. Importantly, inhibition of NPY Y1 receptor (Y1R) accelerated oxidation of free fatty acids in osteoblasts and rescued bone loss in AvilCre:Ptger4fl/fl mice. Thus, downregulation of hypothalamic NPY expression lipolyzes free fatty acids for anabolic bone formation through a neuroendocrine descending interoceptive regulation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Laura Quintana ◽  
Cecilia Jalabert ◽  
H. Bobby Fokidis ◽  
Kiran K. Soma ◽  
Lucia Zubizarreta

Aggression is an adaptive behavior that plays an important role in gaining access to limited resources. Aggression may occur uncoupled from reproduction, thus offering a valuable context to further understand its neural and hormonal regulation. This review focuses on the contributions from song sparrows (Melospiza melodia) and the weakly electric banded knifefish (Gymnotus omarorum). Together, these models offer clues about the underlying mechanisms of non-breeding aggression, especially the potential roles of neuropeptide Y (NPY) and brain-derived estrogens. The orexigenic NPY is well-conserved between birds and teleost fish, increases in response to low food intake, and influences sex steroid synthesis. In non-breeding M. melodia, NPY increases in the social behavior network, and NPY-Y1 receptor expression is upregulated in response to a territorial challenge. In G. omarorum, NPY is upregulated in the preoptic area of dominant, but not subordinate, individuals. We hypothesize that NPY may signal a seasonal decrease in food availability and promote non-breeding aggression. In both animal models, non-breeding aggression is estrogen-dependent but gonad-independent. In non-breeding M. melodia, neurosteroid synthesis rapidly increases in response to a territorial challenge. In G. omarorum, brain aromatase is upregulated in dominant but not subordinate fish. In both species, the dramatic decrease in food availability in the non-breeding season may promote non-breeding aggression, via changes in NPY and/or neurosteroid signaling.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4460
Author(s):  
Angela Bischoff ◽  
Martina Stickan-Verfürth ◽  
Martin C. Michel

Neuropeptide Y (NPY) acts via multiple receptor subtypes termed Y1, Y2 and Y5. While Y1 receptor-mediated effects, e.g., in the vasculature, are often sensitive to inhibitors of L-type Ca2+ channels such as nifedipine, little is known about the role of such channels in Y5-mediated effects such as diuresis and natriuresis. Therefore, we explored whether nifedipine affects NPY-induced diuresis and natriuresis. After pre-treatment with nifedipine or vehicle, anesthetized rats received infusions or bolus injections of NPY. Infusion NPY (1 µg/kg/min) increased diuresis and natriuresis, and this was attenuated by intraperitoneal injection of nifedipine (3 µg/kg). Concomitant decreases in heart rate and reductions of renal blood flow were not attenuated by nifedipine. Bolus injections of NPY (0.3, 1, 3, 10 and 30 μg/kg) dose-dependently increased mean arterial pressure and renovascular vascular resistance; only the higher dose of nifedipine (100 μg/kg/min i.v.) moderately inhibited these effects. We conclude that Y5-mediated diuresis and natriuresis are more sensitive to inhibition by nifedipine than Y1-mediated renovascular effects. Whether this reflects a general sensitivity of Y5 receptor-mediated responses or is specific for diuresis and natriuresis remains to be investigated.


2021 ◽  
Author(s):  
Chieh-Hsin Yang ◽  
Danise Ann-Onda ◽  
Xuzhu Lin ◽  
Stacey Fynch ◽  
Shaktypreya Nadarajah ◽  
...  

Loss of functional β-cell mass is a key factor contributing to the poor glycaemic control in type 2 diabetes. However, therapies that directly target these underlying processes remains lacking. Here we demonstrate that gene expression of neuropeptide Y1 receptor and its ligand, neuropeptide Y, was significantly upregulated in human islets from subjects with type 2 diabetes. Importantly, the reduced insulin secretion in type 2 diabetes was associated with increased neuropeptide Y and Y1 receptor expression in human islets. Consistently, pharmacological inhibition of Y1 receptors by BIBO3304 significantly protected β-cells from dysfunction and death under multiple diabetogenic conditions in islets. In a preclinical study, Y1 receptor antagonist BIBO3304 treatment improved β-cell function and preserved functional β-cell mass, thereby resulting in better glycaemic control in both high-fat-diet/multiple low dose streptozotocin- and db/db type 2 diabetic mice. Collectively, our results uncovered a novel causal link of increased islet NPY-Y1 receptor signaling to β-cell dysfunction and failure in human type 2 diabetes. These results further demonstrate that inhibition of Y1 receptor by BIBO3304 represents a novel and effective β-cell protective therapy for improving functional β-cell mass and glycaemic control in type 2 diabetes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chenxu Yan ◽  
Tianshu Zeng ◽  
Kailun Lee ◽  
Max Nobis ◽  
Kim Loh ◽  
...  

AbstractObesity is caused by an imbalance between food intake and energy expenditure (EE). Here we identify a conserved pathway that links signalling through peripheral Y1 receptors (Y1R) to the control of EE. Selective antagonism of peripheral Y1R, via the non-brain penetrable antagonist BIBO3304, leads to a significant reduction in body weight gain due to enhanced EE thereby reducing fat mass. Specifically thermogenesis in brown adipose tissue (BAT) due to elevated UCP1 is enhanced accompanied by extensive browning of white adipose tissue both in mice and humans. Importantly, selective ablation of Y1R from adipocytes protects against diet-induced obesity. Furthermore, peripheral specific Y1R antagonism also improves glucose homeostasis mainly driven by dynamic changes in Akt activity in BAT. Together, these data suggest that selective peripheral only Y1R antagonism via BIBO3304, or a functional analogue, could be developed as a safer and more effective treatment option to mitigate diet-induced obesity.


Sign in / Sign up

Export Citation Format

Share Document