scholarly journals Phylogeographic analysis of shrubby beardtongues reveals range expansions during the Last Glacial Maximum and implicates the Klamath Mountains as a hotspot for hybridization

2021 ◽  
Author(s):  
Benjamin W. Stone ◽  
Andrea D. Wolfe
2020 ◽  
Author(s):  
Benjamin W. Stone ◽  
Andrea D. Wolfe

AbstractQuaternary glacial cycles often altered species’ geographic distributions, which in turn altered the geographic structure of a species’ genetic diversity. In many cases, glacial expansion forced species in temperate climates to contract their ranges and reside in small pockets of suitable habitat (refugia), where they were likely to interact closely with other species, setting the stage for potential gene exchange. These introgression events, in turn, would have degraded species boundaries, making the inference of phylogenetic relationships challenging. Using high-throughput sequence data, we employ a combination of species distribution models, models of demographic history, and hybridization tests to assess the effect of glaciation on the geographic distributions, phylogenetic relationships, and patterns of gene flow of five species of Penstemon subgenus Dasanthera, long-lived shrubby angiosperms distributed throughout the Pacific Northwest of North America. Surprisingly, we find that rather than reducing their ranges to small refugia, most Penstemon subgenus Dasanthera species experienced increases in suitable habitat during the Last Glacial Maximum. We also find substantial evidence for gene exchange between species, with the bulk of introgression events occurring in or near the Klamath Mountains of southwestern Oregon and northwestern California. Subsequently, our phylogenetic inference reveals blurred taxonomic boundaries in the Klamath Mountains, where introgression is most prevalent. Our results question the classical paradigm of temperate species’ responses to glaciation, and highlight the importance of contextualizing phylogenetic inference with the demographic histories of the species of interest.


2021 ◽  
pp. 10-17
Author(s):  
Oguz Turkozan

A cycle of glacial and interglacial periods in the Quaternary caused species’ ranges to expand and contract in response to climatic and environmental changes. During interglacial periods, many species expanded their distribution ranges from refugia into higher elevations and latitudes. In the present work, we projected the responses of the five lineages of Testudo graeca in the Middle East and Transcaucasia as the climate shifted from the Last Glacial Maximum (LGM, Mid – Holocene), to the present. Under the past LGM and Mid-Holocene bioclimatic conditions, models predicted relatively more suitable habitats for some of the lineages. The most significant bioclimatic variables in predicting the present and past potential distribution of clades are the precipitation of the warmest quarter for T. g. armeniaca (95.8 %), precipitation seasonality for T. g. buxtoni (85.0 %), minimum temperature of the coldest month for T. g. ibera (75.4 %), precipitation of the coldest quarter for T. g. terrestris (34.1 %), and the mean temperature of the driest quarter for T. g. zarudyni (88.8 %). Since the LGM, we hypothesise that the ranges of lineages have either expanded (T. g. ibera), contracted (T. g. zarudnyi) or remained stable (T. g. terrestris), and for other two taxa (T. g. armeniaca and T. g. buxtoni) the pattern remains unclear. Our analysis predicts multiple refugia for Testudo during the LGM and supports previous hypotheses about high lineage richness in Anatolia resulting from secondary contact.


2017 ◽  
Author(s):  
Brendon J. Quirk ◽  
◽  
Jeffrey R. Moore ◽  
Benjamin J. Laabs ◽  
Mitchell A. Plummer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document