scholarly journals Deciphering the Che2 chemosensory pathway and the roles of individual Che2 proteins from Pseudomonas aeruginosa

2020 ◽  
Author(s):  
Emilie Orillard ◽  
Kylie J. Watts
2002 ◽  
Vol 184 (23) ◽  
pp. 6481-6489 ◽  
Author(s):  
David A. D'Argenio ◽  
M. Worth Calfee ◽  
Paul B. Rainey ◽  
Everett C. Pesci

ABSTRACT Two distinctive colony morphologies were noted in a collection of Pseudomonas aeruginosa transposon insertion mutants. One set of mutants formed wrinkled colonies of autoaggregating cells. Suppressor analysis of a subset of these mutants showed that this was due to the action of the regulator WspR and linked this regulator (and the chemosensory pathway to which it belongs) to genes that encode a putative fimbrial adhesin required for biofilm formation. WspR homologs, related in part by a shared GGDEF domain, regulate cell surface factors, including aggregative fimbriae and exopolysaccharides, in diverse bacteria. The second set of distinctive insertion mutants formed colonies that lysed at their center. Strains with the most pronounced lysis overproduced the Pseudomonas quinolone signal (PQS), an extracellular signal that interacts with quorum sensing. Autolysis was suppressed by mutation of genes required for PQS biosynthesis, and in one suppressed mutant, autolysis was restored by addition of synthetic PQS. The mechanism of autolysis may involve activation of the endogenous prophage and phage-related pyocins in the genome of strain PAO1. The fact that PQS levels correlated with autolysis suggests a fine balance in natural populations of P. aeruginosa between survival of the many and persistence of the few.


2021 ◽  
Vol 85 (1) ◽  
Author(s):  
Miguel A. Matilla ◽  
David Martín-Mora ◽  
Jose A. Gavira ◽  
Tino Krell

SUMMARY Bacteria have evolved a variety of signal transduction mechanisms that generate different outputs in response to external stimuli. Chemosensory pathways are widespread in bacteria and are among the most complex signaling mechanisms, requiring the participation of at least six proteins. These pathways mediate flagellar chemotaxis, in addition to controlling alternative functions such as second messenger levels or twitching motility. The human pathogen Pseudomonas aeruginosa has four different chemosensory pathways that carry out different functions and are stimulated by signal binding to 26 chemoreceptors. Recent research employing a diverse range of experimental approaches has advanced enormously our knowledge on these four pathways, establishing P. aeruginosa as a primary model organism in this field. In the first part of this article, we review data on the function and physiological relevance of chemosensory pathways as well as their involvement in virulence, whereas the different transcriptional and posttranscriptional regulatory mechanisms that govern pathway function are summarized in the second part. The information presented will be of help to advance the understanding of pathway function in other organisms.


Pneumologie ◽  
2010 ◽  
Vol 64 (01) ◽  
Author(s):  
L Sprenger ◽  
T Goldmann ◽  
E Vollmer ◽  
B Wollenberg ◽  
P Zabel ◽  
...  

Pneumologie ◽  
2010 ◽  
Vol 64 (S 03) ◽  
Author(s):  
L Spenger ◽  
T Goldmann ◽  
E Vollmer ◽  
B Wollenberg ◽  
HP Hauber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document