pathway function
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 34)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Maria Chernysheva ◽  
Yaroslav Sych ◽  
Aleksejs Fomins ◽  
José Luis Alatorre Warren ◽  
Christopher Lewis ◽  
...  

ABSTRACTThe medial prefrontal cortex (mPFC) and the dorsomedial striatum (dmStr) are linked to working memory (WM) but how striatum-projecting mPFC neurons contribute to WM encoding, maintenance, or retrieval remains unclear. Here, we probed mPFC→dmStr pathway function in freely-moving mice during a T-maze alternation test of spatial WM. Fiber photometry of GCaMP6m-labeled mPFC→dmStr projection neurons revealed strongest activity during the delay period that requires WM maintenance. Demonstrating causality, optogenetic inhibition of mPFC→dmStr neurons only during the delay period impaired performance. Conversely, enhancing mPFC→dmStr pathway activity—via pharmacological suppression of HCN1 or by optogenetic activation during the delay— alleviated WM impairment induced by NMDA receptor blockade. Consistently, cellular-resolution miniscope imaging resolved preferred activation of >50% mPFC→dmStr neurons during WM maintenance. This subpopulation was distinct from neurons showing preference for encoding and retrieval. In all periods, including the delay, neuronal sequences were evident. Striatum-projecting mPFC neurons thus critically contribute to spatial WM maintenance.


2021 ◽  
Author(s):  
Amithavikram R Hathibelagal ◽  
Vishal Prajapati ◽  
Indrani Jayagopi ◽  
Subhadra Jalali ◽  
Shonraj Ballae Ganeshrao

AbstractPurposeSimple psychophysical paradigm is available as a digital application in iOS devices such as iPad to measure the function of ON and OFF visual pathways. However, an age-matched normative database is not readily available. The purpose of the study is to evaluate the response of ON and OFF visual pathways as a function of age.Methods158 normal healthy adults (84 males and 74 females) whose age ranged 18-80 years participated in the study. None of them had any ocular disease (except cataract of grade II or less) and visual acuity of ≤ 20/25. Monocular testing (only one eye) was performed on the ‘EyeSpeed’ application on an iPad at 40cm distance. The targets ranged between 1 to 3 light or dark squares presented randomly in a noise background and participants responded by indicating the number of squares by touching the screen as fast as possible. The main outcome variables are reaction time, accuracy and performance index (1 / speed * accuracy).ResultsThe median reaction time was shorter (Median (IQR): 1.53s (0.49) [dark] Vs 1.76s (0.58) [light], p < 0.001) and accuracy was higher (97.21% (3.30) [dark] Vs 95.15% (5.10) [light], p < 0.001) for dark targets than the light targets. Performance index and reaction time for both target types significantly correlated with age (ρ = −0.41 to −0.43; p < 0.001).ConclusionsThis normative database will be useful to quantify disease-specific defects. More importantly, the ON pathway function can potentially serve as a surrogate for rod photoreceptor function.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Anna Osnato ◽  
Stephanie Brown ◽  
Christel Krueger ◽  
Simon Andrews ◽  
Amanda J Collier ◽  
...  

The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naive human pluripotency have not been fully established. Here, we demonstrate that TGFβ signalling is required to maintain naive hPSCs. The downstream effector proteins – SMAD2/3 – bind common sites in naive and primed hPSCs, including shared pluripotency genes. In naive hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naive pluripotency genes. Inhibiting TGFβ signalling in naive hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naive and primed hPSCs follow different transcriptional trajectories after inhibition of TGFβ signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naive hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFβ pathway function in human pluripotency spanning a developmental window from naive to primed states.


2021 ◽  
Author(s):  
Anna Osnato ◽  
Stephanie Brown ◽  
Christel Krueger ◽  
Simon Andrews ◽  
Amanda J. Collier ◽  
...  

The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naïve human pluripotency have not been fully established. Here, we demonstrate that TGFβ signalling is required to maintain naïve hPSCs. The downstream effector proteins – SMAD2/3 – bind common sites in naïve and primed hPSCs, including shared pluripotency genes. In naïve hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naïve pluripotency genes. Inhibiting TGFβ signalling in naïve hPSCs causes the downregulation of SMAD2/3–target genes and pluripotency exit. Single–cell analyses reveal that naïve and primed hPSCs follow different transcriptional trajectories after inhibition of TGFβ signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naïve hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFβ pathway function in human pluripotency spanning a developmental window from naïve to primed states.


2021 ◽  
Vol 9 (4) ◽  
pp. 759
Author(s):  
Aikaterini Poulaki ◽  
Evangelia-Theophano Piperaki ◽  
Michael Voulgarelis

The leishmaniases constitute a group of parasitic diseases caused by species of the protozoan genus Leishmania. In humans it can present different clinical manifestations and are usually classified as cutaneous, mucocutaneous, and visceral (VL). Although the full range of parasite—host interactions remains unclear, recent advances are improving our comprehension of VL pathophysiology. In this review we explore the differences in VL immunobiology between the liver and the spleen, leading to contrasting infection outcomes in the two organs, specifically clearance of the parasite in the liver and failure of the spleen to contain the infection. Based on parasite biology and the mammalian immune response, we describe how hypoxia-inducible factor 1 (HIF1) and the PI3K/Akt pathway function as major determinants of the observed immune failure. We also summarize existing knowledge on pancytopenia in VL, as a direct effect of the parasite on bone marrow health and regenerative capacity. Finally, we speculate on the possible effect that manipulation by the parasite of the PI3K/Akt/HIF1 axis may have on the myelodysplastic (MDS) features observed in VL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Jason McAnany ◽  
Nathanael Matei ◽  
Yi-Fan Chen ◽  
Karen Liu ◽  
Jason C. Park ◽  
...  

AbstractTo characterize rod- and cone-pathway function in the 5xFAD mouse model of Alzheimer’s disease (AD) using the full-field electroretinogram (ERG). Dark-adapted (DA; rod-pathway) and light-adapted (LA; cone-pathway) ERGs were recorded from three-month-old 5xFAD and wild type (WT) mice. ERGs were elicited by achromatic flashes (0.01–25 cd-s-m−2). Amplitude and implicit time (IT) of the a-wave, b-wave, and oscillatory potentials (OPs) were calculated according to convention. In addition, the amplitude and IT of the photopic negative response (PhNR) were measured from the LA recordings. Amplitude and IT differences between the 5xFAD and WT groups were evaluated using quantile regression models. Under DA conditions, there were significant differences between the 5xFAD and WT groups in post-receptor function, whereas photoreceptor function did not differ significantly. Specifically, the DA a-wave amplitude did not differ between groups (p = 0.87), whereas the b-wave amplitude was reduced in the 5xFAD mice (p = 0.003). There were significant OP (p < 0.001) and a-wave (p = 0.04) delays, but the a-wave delay may be attributable to a post-receptor abnormality. Under LA conditions, the only 5xFAD abnormalities were in the PhNR, which was reduced (p = 0.009) and delayed (p = 0.04). The full-field ERG can be abnormal in the 5xFAD model of AD, with the greatest effects on post-receptor rod pathway function. These results indicate that retinal electrophysiology may be a useful tool for evaluating neural dysfunction in AD.


Author(s):  
Xing Du ◽  
Qiqi Li ◽  
Liu Yang ◽  
Qiang Zeng ◽  
Siqi Wang ◽  
...  

NORFA, the first lincRNA associated with sow fertility, has been shown to control granulosa cell (GC) functions and follicular atresia. However, the underlying mechanism is not fully understood. In this study, RNA-seq was performed and we noticed that inhibition of NORFA led to dramatic transcriptomic alterations in porcine GCs. A total of 1,272 differentially expressed transcripts were identified, including 1167 DEmRNAs and 105 DEmiRNAs. Furthermore, protein–protein interaction, gene-pathway function, and TF–miRNA–mRNA regulatory networks were established and yielded four regulatory modules with multiple hub genes, such as AR, ATG5, BAK1, CENPE, NR5A1, NFIX, WNT5B, ssc-miR-27b, and ssc-miR-126. Functional assessment showed that these hub DEGs were mainly enriched in TGF-β, PI3K-Akt, FoxO, Wnt, MAPK, and ubiquitin pathways that are essential for GC states (apoptosis and proliferation) and functions (hormone secretion). In vitro, we also found that knockdown of NORFA in porcine GCs significantly induced cell apoptosis, impaired cell viability, and suppressed 17β-estradiol (E2) synthesis. Notably, four candidate genes for sow reproductive traits (INHBA, NCOA1, TGFβ-1, and TGFBR2) were also identified as potential targets of NORFA. These findings present a panoramic view of the transcriptome in NORFA-reduced GCs, highlighting that NORFA, a candidate lincRNA for sow fertility, is crucial for the normal states and functions of GCs.


Sign in / Sign up

Export Citation Format

Share Document