scholarly journals The influence of genetics, defensive chemistry and the fungal microbiome on disease outcome in whitebark pine trees

2018 ◽  
Vol 19 (8) ◽  
pp. 1847-1858 ◽  
Author(s):  
Lorinda S. Bullington ◽  
Ylva Lekberg ◽  
Richard Sniezko ◽  
Beau Larkin
Author(s):  
Kendra McLauchlan ◽  
Kyleen Kelly

One of the keystone tree species in subalpine forests of the western United States – whitebark pine (Pinus albicaulis, hereafter whitebark pine) – is experiencing a significant mortality event (Millar et al. 2012). Whitebark pine occupies a relatively restricted range in the high-elevation ecosystems in the northern Rockies and its future is uncertain. The current decline of whitebark pine populations has been attributed to pine beetle infestations, blister rust infections, anthropogenic fire suppression, and climate change (Millar et al. 2012). Despite the knowledge that whitebark pine is severely threatened by multiple stressors, little is known about the historic capacity of this species to handle these stressors. More specifically, it is unknown how whitebark pine has dealt with past climatic variability, particularly variation in the type of precipitation (rain vs. snow) available for soil moisture, and how differences in quantity of precipitation have influenced the establishment and growth of modern stands. We propose to study the past responses of whitebark pine to paleoclimatic conditions, which would be useful to park ecologists in developing new conservation and regeneration plans to prevent the extinction of this already severely threatened high-elevation resource. The purpose of this study is to determine in great temporal and spatial detail the demographics of the current stand of whitebark pine trees in the watershed surrounding an unnamed, high-altitude pond (known informally as Whitebark Pine Moraine Pond) located approximately 3.06 miles NW of Jenny Lake in Grand Teton National Park (GTNP). The main objectives of this study were: 1.) To obtain the precise GPS locations of the current stand of whitebark pine trees in the watershed to generate a GIS map detailing their locations. 2.) To obtain increment cores of a subset of the trees in the watershed to estimate age and date of establishment for the current stand of whitebark pines, with particular attention to fire history. 3.) To analyze ring widths from core samples to identify climatic indicators that may influence the regeneration and survival of whitebark pine.


Author(s):  
Etienne Cardinal ◽  
Brenda Shepherd ◽  
Jodie Krakowski ◽  
Carl James Schwarz ◽  
John Stirrett-Wood

This is the first study testing effectiveness of semiochemical treatments to protect individual trees from a range-expanding mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) attack into newly exposed host populations of endangered whitebark pine (Pinus albicaulis Engelmann). We investigated the effectiveness of a combination of verbenone and Green-Leaf Volatiles (GLV) to protect rare and valuable disease-resistant trees during a MPB epidemic from 2015 to 2018 in Jasper National Park, Canada. Treatments reduced the proportion of trees attacked by MPB for all diameter classes, across all stands, from 46 to 60%. We also evaluated the effect of the exotic disease white pine blister rust (caused by the fungus Cronartium ribicola J.C. Fisch), the species’ other main regional threat. MPB were less likely to attack large, rust infected trees than healthy trees, emphasizing the value of the semiochemical treatment. Protecting large, cone-bearing disease-resistant whitebark pine trees is fundamental to whitebark pine recovery. Maintaining reproductive trees on the landscape increases the frequency and diversity of rust-resistant genotypes more effectively than just planting seedlings to replace MPB-killed trees, because this slow-growing species takes over 80 years to reproduce. Our study confirmed protecting large rust-resistant trees with verbenone and GLV is a proactive and effective treatment against MPB for whitebark pine in naïve populations.


2014 ◽  
Vol 44 (11) ◽  
pp. 1312-1319 ◽  
Author(s):  
Eleanor C. Lahr ◽  
Anna Sala

Stored resources in trees reflect physiological and environmental variables and affect life history traits, including growth, reproduction, resistance to abiotic stress, and defense. However, less attention has been paid to the fact that stored resources also determine tissue nutritional quality and may have direct consequences for the success of herbivores and pathogens. Here, we investigated whether stored resources differed between two hosts of the mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902): lodgepole pine (Pinus contorta Douglas ex. Loudon), a common host, and whitebark pine (Pinus albicaulis Engelmann), a more naïve host that grows at higher altitudes. Phloem and sapwood were sampled in small- and large-diameter trees at two elevations, and nitrogen, phosphorus, nonstructural carbohydrates, and lipids were measured. We found that concentrations of stored resources increased with elevation and tree diameter for both species and that whitebark pine had thicker phloem than lodgepole pine. Overall, stored resources were higher in whitebark pine such that small-diameter whitebark pine trees often had resource concentrations higher than large-diameter lodgepole pines. These results suggest that whitebark pine is of higher nutritional quality than lodgepole pine, which could have implications for the current expansion of mountain pine beetles into higher altitude and latitude forests in response to climate warming.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1060
Author(s):  
Franklin Alongi ◽  
Andrew J. Hansen ◽  
David Laufenberg ◽  
Robert E. Keane ◽  
Kristin Legg ◽  
...  

Whitebark pine is difficult to distinguish from limber pine when seed cones are not present. This is often the case because of young stand age, growth at environmental extremes, or harvesting by vertebrate species. Developing an economical genetic identification tool that distinguishes non-cone-bearing limber from whitebark pine, therefore, could aid many kinds of research on these species. Phylogenetic studies involving limber and whitebark pine suggest that chloroplast DNA sequences differ between these species. We therefore wanted to identify chloroplast loci that could differentiate limber from whitebark pine trees by taking an economical approach involving restriction-site analysis. We generated chloroplast DNA barcode sequences sampled from limber and whitebark pine trees that we identified using attached seed cones. We searched for nucleotide differences associated with restriction endonuclease recognition sites. Our analyses revealed that matK and the psbA-trnH spacer each readily amplified and harbored multiple DNA-sequence differences between limber and whitebark pine. The matK coding sequence of whitebark pine has a BsmAI restriction site not found in limber pine. The psbA-trnH spacer of limber pine has two PsiI restriction sites, neither of which is found in whitebark pine. DNA-sequence and restriction-site analysis of the psbA-trnH spacer from 111 trees showed complete congruence between visually and genetically identified limber (n = 68) and whitebark (n = 43) pine trees. We conclude that restriction site analysis of the chloroplast psbA-trnH spacer and matK involves both minimal technical expertize and research funds. These findings should be of value to foresters interested in species identification and distribution modeling, as well as the analysis of fossil pine pollen, given that gymnosperms transmit chloroplast DNA paternally.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 648 ◽  
Author(s):  
Robert Keane

Wildfire in declining whitebark pine forests can be a tool for ecosystem restoration or an ecologically harmful event. This document presents a set of possible wildfire management practices for facilitating the restoration of whitebark pine across its range in Western North America. These management actions are designed to enhance whitebark pine resilience and health, while also being effective wildfire management measures. The actions are presented by the three phases of the wildfire continuum: Before, during, and after a wildfire. Current pre-wildfire restoration actions, such as mechanical thinning’s, prescribed burning, and fuel treatments, can also be designed to be fuel treatment activities that allow more effective suppression of wildfires when needed. Three wildfire strategies can be implemented while the wildfire is burning—full suppression, partial suppression, and wildland fire use (letting some fires burn under acceptable conditions)—for protecting valuable whitebark pine trees and for ecosystem restoration. Finally, post-wildfire activities include planting rust-resistant seedlings and monitoring effects of the wildfires. Recommended wildfire management practices for the wildfire continuum are specified by region, site type, and stand type in the last section of this paper.


Author(s):  
Kendra McLaughlan ◽  
Kyleen Kelly

Whitebark pine (Pinus albicaulis) is the only pine keystone species found in North America. Although it is considered a keystone species in high elevation ecosystems in the northern Rockies, it occupies a relatively restricted range and its future is uncertain. In modern times, it has experienced a significant decline in population due to pine beetle infestations, blister rust infections, fire suppression, and climate change. Despite the knowledge that the species is severely threatened, little is known about its paleoecology. More specifically, much remains unknown about how the distribution and stability of whitebark pine were affected by past climate change. The purpose of this study is to determine in great temporal and spatial detail the demographics of the current stand of whitebark pine trees in the watershed surrounding an unnamed, high-altitude pond (known informally as Whitebark Pine Moraine Pond) located approximately 3.06 miles NW of Jenny Lake in Grand Teton National Park (GTNP). The main objectives of this study are: 1.) To obtain the precise GPS locations of the current stand of whitebark pine trees in the watershed to generate a GIS map detailing their locations. 2.) To obtain increment cores of a subset of the trees in the watershed to estimate age and date of establishment for the current stand of whitebark pines, with particular attention to fire history. 3.) To analyze ring widths from core samples to identify climatic indicators that may influence the regeneration and survival of whitebark pine.


2003 ◽  
Vol 81 (5) ◽  
pp. 763-770 ◽  
Author(s):  
Laura A Felicetti ◽  
Charles C Schwartz ◽  
Robert O Rye ◽  
Mark A Haroldson ◽  
Kerry A Gunther ◽  
...  

Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat- and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in the Greater Yellowstone Ecosystem is strongly linked to variation in pine-nut availability. Because whitebark pine trees are infected with blister rust (Cronartium ribicola), an exotic fungus that has killed the species throughout much of its range in the northern Rocky Mountains, we used stable isotopes to quantify the importance of this food resource to Yellowstone grizzly bears while healthy populations of the trees still exist. Whitebark pine nuts have a sulfur-isotope signature (9.2 ± 1.3‰ (mean ± 1 SD)) that is distinctly different from those of all other grizzly bear foods (ranging from 1.9 ± 1.7‰ for all other plants to 3.1 ± 2.6‰ for ungulates). Feeding trials with captive grizzly bears were used to develop relationships between dietary sulfur-, carbon-, and nitrogen-isotope signatures and those of bear plasma. The sulfur and nitrogen relationships were used to estimate the importance of pine nuts to free-ranging grizzly bears from blood and hair samples collected between 1994 and 2001. During years of poor pine-nut availability, 72% of the bears made minimal use of pine nuts. During years of abundant cone availability, 8 ± 10% of the bears made minimal use of pine nuts, while 67 ± 19% derived over 51% of their assimilated sulfur and nitrogen (i.e., protein) from pine nuts. Pine nuts and meat are two critically important food resources for Yellowstone grizzly bears.


2000 ◽  
Vol 179 ◽  
pp. 193-196
Author(s):  
V. I. Makarov ◽  
A. G. Tlatov

AbstractA possible scenario of polar magnetic field reversal of the Sun during the Maunder Minimum (1645–1715) is discussed using data of magnetic field reversals of the Sun for 1880–1991 and the14Ccontent variations in the bi-annual rings of the pine-trees in 1600–1730 yrs.


Sign in / Sign up

Export Citation Format

Share Document