Species distribution and ecological suitability analysis for potential tick vectors of Kyasanur forest disease in the Western Ghats of Kerala

Author(s):  
Balasubramanian Rathinam ◽  
Sahina Sidhik
One Health ◽  
2021 ◽  
pp. 100299
Author(s):  
Michael G. Walsh ◽  
Rashmi Bhat ◽  
Venkatesh Nagarajan-Radha ◽  
Prakash Narayanan ◽  
Navya Vyas ◽  
...  

2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Michael Walsh ◽  
Siobhan Mor ◽  
Hindol Maity ◽  
Shah Hossain

Abstract Background Anthropogenic pressure in biodiversity hotspots is increasingly recognised as a major driver of the spillover and expansion of zoonotic disease. In the Western Ghats region of India, a devastating tick-borne zoonosis, Kyasanur Forest disease (KFD), has been expanding rapidly beyond its endemic range in recent decades. While it has been suggested that anthropogenic pressure in the form of land use changes that lead to the loss of native forest may be directly contributing to the expanding range of KFD, clear evidence has not yet established the association between forest loss and KFD risk. Methods The current study sought to investigate the relationship between KFD landscape suitability and both forest loss and mammalian species richness to inform its epidemiology and infection ecology. Forty-seven outbreaks of KFD between 1 January, 2012 and 30 June, 2019 were modelled as an inhomogeneous Poisson process. Results Both forest loss (relative risk (RR) = 1.83; 95% C.I. 1.33 – 2.51) and mammalian species richness (RR = 1.29; 95% C.I. 1.16 – 1.42) were strongly associated with increased risk of KFD. Conclusions These results provide the first evidence of a clear association between increasing forest loss and risk for KFD. Moreover, the findings also highlight the importance of forest loss in areas of high biodiversity. This evidence supports integrative approaches to public health that incorporate conservation strategies simultaneously protective of humans, animals, and the environment. Key messages The association between deforestation and KFD risk suggest potential benefit in leveraging conservation efforts in the service of public health.


2019 ◽  
Vol 77 (3) ◽  
pp. 435-447 ◽  
Author(s):  
N. Naren Babu ◽  
Anup Jayaram ◽  
H. Hemanth Kumar ◽  
Prashant Pareet ◽  
Sarthak Pattanaik ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pragya D. Yadav ◽  
Savita Patil ◽  
Santoshkumar M. Jadhav ◽  
Dimpal A. Nyayanit ◽  
Vimal Kumar ◽  
...  

Author(s):  
Michael G Walsh ◽  
Siobhan M Mor ◽  
Hindol Maity ◽  
Shah Hossain

Abstract Background Anthropogenic pressure in biodiversity hotspots is increasingly recognized as a major driver of the spillover and expansion of zoonotic disease. In the Western Ghats region of India, a devastating tick-borne zoonosis, Kyasanur Forest disease (KFD), has been expanding rapidly beyond its endemic range in recent decades. It has been suggested that anthropogenic pressure in the form of land use changes that lead to the loss of native forest may be directly contributing to the expanding range of KFD, but clear evidence has not yet established the association between forest loss and KFD risk. Methods The current study sought to investigate the relationship between KFD landscape suitability and both forest loss and mammalian species richness, to inform its epidemiology and infection ecology. A total of 47 outbreaks of KFD between 1 January 2012 and 30 June 2019 were modelled as an inhomogeneous Poisson process. Results Both forest loss [relative risk (RR) = 1.83; 95% confidence interval (CI) 1.33–2.51] and mammalian species richness (RR = 1.29; 95% CI 1.16–1.42) were strongly associated with increased risk of KFD and dominated its landscape suitability. Conclusions These results provide the first evidence of a clear association between increasing forest loss and risk for KFD. Moreover, the findings also highlight the importance of forest loss in areas of high biodiversity. Therefore, this evidence provides strong support for integrative approaches to public health which incorporate conservation strategies simultaneously protective of humans, animals and the environment.


2021 ◽  
Author(s):  
Michael Walsh ◽  
Rashmi Bhat ◽  
Venkatesh Nagarajan-Radha ◽  
Prakash Narayanan ◽  
Navya Vyas ◽  
...  

Kyasanur forest disease virus (KFDV) is a rapidly expanding tick-borne zoonotic virus with natural foci in the forested region of the Western Ghats of South India. The Western Ghats is one of the world's most important biodiversity hotspots and, like many such areas of high biodiversity, is under significant pressure from anthropogenic landscape change. The current study sought to quantify mammalian species richness using ensemble models of the distributions of a sample of species extant in the Western Ghats and to explore its association with KFDV outbreaks, as well as the modifying effects of deforestation on this association. Species richness was quantified as a composite of individual species' distributions, as derived from ensembles of boosted regression tree, random forest, and generalised additive models. Species richness was further adjusted for the potential biotic constraints of sympatric species. Both species richness and forest loss demonstrated strong positive associations with KFDV outbreaks, however forest loss substantially modified the association between species richness and outbreaks. High species richness was associated with increased KFDV risk but only in areas of low forest loss. In contrast, lower species richness was associated with increased KFDV risk in areas of greater forest loss. This relationship persisted when species richness was adjusted for biotic constraints at the taluk-level. In addition, the taluk-level species abundances of three monkey species (Macaca radiata, Semnopithecus hypoleucus, and Semnopithecus priam) were also associated with outbreaks. These results suggest that increased monitoring of wildlife in areas of significant habitat fragmentation may add considerably to critical knowledge gaps in KFDV epidemiology and infection ecology and should be incorporated into novel One Health surveillance development for the region. In addition, the inclusion of some primate species as sentinels of KFDV circulation into general wildlife surveillance architecture may add further value.


2020 ◽  
Author(s):  
Michael G. Walsh ◽  
Siobhan M. Mor ◽  
Hindol Maity ◽  
Shah Hossain

AbstractKyasanur Forest disease (KFD) is one of India’s severe arboviruses capable of causing prolonged debilitating disease. It has been expanding beyond its historical endemic locus at an alarming rate over the last two decades. The natural nidus of this zoonosis is located in the monsoon rainforest of the Western Ghats, India, which is one of the world’s most important biodiversity hotspots. Definitive reservoir hosts for KFD virus (KFDV) have yet to be delineated, and thus much of the infection ecology of this virus, and its consequent transmission dynamics, remains uncertain. Given its unique biogeographical context, identifying ecological parameters of KFDV relevant to the virus’ epidemiology has been complex and challenging. The challenge has been exacerbated by diminished research efforts in wildlife surveillance over the last two decades, coinciding with the expansion of the range of KFD across the region. The current investigation sought to define a preliminary ecological profile of KFDV hosts based on their life history and feeding traits to aid in re-establishing targeted wildlife surveillance and to discern those ecological traits of wildlife hosts that may improve our understanding of KFD epidemiology. The importance of fast-living among KFDV hosts was of special interest with respect to the latter aim. We compared mammalian traits between host and non-host species using general additive models and phylogenetic generalised linear models. This study found that both body mass and forest forage were strongly associated with mammalian host infection status, but that reproductive life history traits were not. These findings will help in structuring ecologically based wildlife surveillance and field investigations, while also helping to parameterise novel epidemiological models of zoonotic infection risk that incorporate species functional traits in a region where biogeography, landscape ecology, and community ecology manifest extraordinary complexity, particularly under growing anthropogenic pressure.


Sign in / Sign up

Export Citation Format

Share Document