Changes in germ tube formation and cell-surface hydrophobicity of oralCandida dubliniensisisolates following brief exposure to sub-cidal concentrations of polyene and azole antifungal agents

Mycoses ◽  
2013 ◽  
Vol 56 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Arjuna N. B. Ellepola ◽  
Bobby K. Joseph ◽  
Z. U. Khan
2008 ◽  
Vol 54 (9) ◽  
pp. 718-724 ◽  
Author(s):  
Silvia Borecká-Melkusová ◽  
Helena Bujdáková

Candida infections are frequently associated with formation of biofilms on artificial medical devices. This work studied variation of cell surface hydrophobicity (CSH) and formation of biofilm in relation to Candida albicans and Candida dubliniensis genotypes and an effect of some conventional antifungal agents on both CSH and biofilm. The 50 isolates of C. albicans and C. dubliniensis were classified into genotypes A, B, C, and D, genotype D being exclusively represented by C. dubliniensis. No significant differences between CSH of genotypes A and B and B and C were observed with respect to cultivation temperature 25 or 37 °C. Candida dubliniensis showed increased CSH in comparison with other C. albicans genotypes (p < 0.001) regardless of temperature used. Using XTT reduction assay and dry masses, genotypes B and C showed reduced ability to form biofilm in comparison with genotype A (p < 0.05) and C. dubliniensis (p < 0.001). Fluconazole reduced biofilm in C. albicans genotypes A, B, and C (p < 0.05) but not CSH. The opposite effect was observed in C. dubliniensis. Voriconazole effectively reduced both biofilm formation and CSH in all tested genotypes of C. albicans and C. dubliniensis (p < 0.05).


1998 ◽  
Vol 37 (4-5) ◽  
pp. 527-530 ◽  
Author(s):  
Hilde Lemmer ◽  
George Lind ◽  
Margit Schade ◽  
Birgit Ziegelmayer

Non-filamentous hydrophobic scum bacteria were isolated from scumming wastewater treatment plants (WWTP) by means of adhesion to hydrocarbons. They were characterized with respect to taxonomy, substrate preferences, cell surface hydrophobicity, and emulsification capability. Their role during flotation events is discussed. Rhodococci are selected by hydrolysable substrates and contribute to flotation both by cell surface hydrophobicity and emulsifying activity at long mean cell residence times (MCRT). Saprophytic Acinetobacter strains are able to promote flotation by hydrophobicity and producing emulsifying agents under conditions when hydrophobic substrates are predominant. Hydrogenophaga and Acidovorax species as well as members of the Cytophaga/Flavobacterium group are prone to proliferate under low loading conditions and contribute to flotation mainly by emulsification.


Sign in / Sign up

Export Citation Format

Share Document