scholarly journals Impact of Brief and Sequential Exposure to Nystatin on the Germ Tube Formation and Cell Surface Hydrophobicity of Oral Candida Albicans Isolates from Human Immunodeficiency Virus-Infected Patients

2014 ◽  
Vol 23 (4) ◽  
pp. 307-312 ◽  
Author(s):  
Arjuna N.B. Ellepola ◽  
Lakshman P. Samaranayake
Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2641-2651 ◽  
Author(s):  
Amparo Galán ◽  
Manuel Casanova ◽  
Amelia Murgui ◽  
Donna M. MacCallum ◽  
Frank C. Odds ◽  
...  

Immunoscreening of a Candida albicans cDNA library with a polyclonal germ-tube-specific antibody (pAb anti-gt) resulted in the isolation of a gene encoding a lysine/glutamic-acid-rich protein, which was consequently designated KER1. The nucleotide and deduced amino acid sequences of this gene displayed no significant homology with any other known sequence. KER1 encodes a 134 kDa lysine (14·5 %)/glutamic acid (16·7 %) protein (Ker1p) that contains two potential transmembrane segments. KER1 was expressed in a pH-conditional manner, with maximal expression at alkaline pH and lower expression at pH 4·0, and was regulated by RIM101. A Δker1/Δker1 null mutant grew normally but was hyperflocculant under germ-tube-inducing conditions, yet this behaviour was also observed in stationary-phase cells grown under other incubation conditions. Western blotting analysis of different subcellular fractions, using as a probe a monospecific polyclonal antibody raised against a highly antigenic domain of Ker1p (pAb anti-Ker1p), revealed the presence of a 134 kDa band in the purified plasma-membrane fraction from the wild-type strain that was absent in the homologous preparation from Δker1/Δker1 mutant. The pattern of cell-wall protein and mannoprotein species released by digestion with β-glucanases, reactive towards pAbs anti-gt and anti-Ker1p, as well as against concanavalin A, was also different in the Δker1/Δker1 mutant. Mutant strains also displayed an increased cell-surface hydrophobicity and sensitivity to Congo red and Calcofluor white. Overall, these findings indicate that the mutant strain was affected in cell-wall composition and/or structure. The fact that the ker1 mutant had attenuated virulence in systemic mouse infections suggests that this surface protein is also important in host–fungus interactions.


2001 ◽  
Vol 183 (12) ◽  
pp. 3582-3588 ◽  
Author(s):  
David R. Singleton ◽  
James Masuoka ◽  
Kevin C. Hazen

ABSTRACT The opportunistic pathogenic yeast Candida albicansexhibits growth phase-dependent changes in cell surface hydrophobicity, which has been correlated with adhesion to host tissues. Cell wall proteins that might contribute to the cell surface hydrophobicity phenotype were released by limited glucanase digestion. These proteins were initially characterized by their rates of retention during hydrophobic interaction chromatography–high-performance liquid chromatography and used as immunogens for monoclonal antibody production. The present work describes the cloning and functional analysis of a C. albicans gene encoding a 38-kDa protein recognized by the monoclonal antibody 6C5-H4CA. The 6C5-H4CA antigen was resolved by two-dimensional electrophoresis, and a partial protein sequence was determined by mass spectrometry analysis of tryptic fragments. The obtained peptides were used to identify the gene sequence from the unannotated C. albicans DNA database. The antibody epitope was provisionally mapped by peptide display panning, and a peptide sequence matching the epitope was identified in the gene sequence. The gene sequence encodes a novel open reading frame (ORF) of unknown function that is highly similar to several otherC. albicans ORFs and to a single Saccharomyces cerevisiae ORF. Knockout of the gene resulted in a decrease in measurable cell surface hydrophobicity and in adhesion of C. albicans to fibronectin. The results suggest that the 38-kDa protein is a hydrophobic surface protein that meditates binding to host target proteins.


Microbiology ◽  
2004 ◽  
Vol 150 (2) ◽  
pp. 285-292 ◽  
Author(s):  
David R. Singleton ◽  
Kevin C. Hazen

Cell-surface hydrophobicity (CSH) in Candida albicans contributes to virulence and can be conveniently regulated in planktonic cultures by altering growth temperature. The CSH1 gene is the first candidate gene that has been demonstrated to play a role in affecting the CSH phenotype. However, the primary amino acid sequence of the CSH1 gene product suggests that the protein should be restricted to the cytoplasm. A majority of the protein appears to demonstrate that localization. Cell-surface biotinylation and limited glucanase digestion were used to determine and estimate the relative amount of Csh1p in the extracellular compartment in comparison to the cytoplasmic pool. Additionally, Western and Northern blotting were used to assess expression of the CSH1 gene under different growth conditions. Compared with cells grown at 23 °C, the total cellular levels of Csh1p are significantly greater at elevated growth temperatures. Detection of Csh1p on the cell surface correlates with the level of overall protein expression. The temperature-dependent regulation and surface presentation of Csh1p suggests a mechanism for regulating the CSH phenotype.


Sign in / Sign up

Export Citation Format

Share Document