precipitation increase
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 33)

H-INDEX

24
(FIVE YEARS 3)

Resources ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Urszula Somorowska

Given the importance of terrestrial evaporation (ET) for the water cycle, a fundamental understanding of the water quantity involved in this process is required. As recent observations reveal a widespread ET intensification across the world, it is important to evaluate regional ET variability. The specific objectives of this study are the following: (1) to assess annual and monthly ET trends across Poland, and (2) to reveal seasons and regions with significant ET changes. This study uses the ET estimates acquired from the Global Land Evaporation Amsterdam Model (GLEAM) dataset allowing for multi-year analysis (1980–2020). The Mann–Kendall test and the Sen’s slope were applied to estimate the significance and magnitude of the trends. The results show that a rising temperature, along with small precipitation increase, led to the accelerated ET of 1.36 mm/y. This was revealed by increased transpiration and interception loss not compensated by a decrease in bare soil evaporation and sublimation. The wide-spread higher water consumption especially occurred during the summer months of June, July, and August. Comparing the two subperiods of 1980–2020, it was found that in 2007–2020, the annual ET increased by 7% compared to the reference period of 1980–2006. These results can serve as an important reference for formulating a water resources management strategy in Poland.


Author(s):  
Irina S. Danilovich ◽  
Nikita G. Piskunovich

The study presents an investigation of current and future changes in precipitation regime over territory of Belarus. An assessment of precipitation means and extremes and droughts indices was provided for period of 1948–2019 and more detailed analysis have been carried out for period of climate change in 1989–2019. The precipitation expected changes were studied for period of 2021–2099. It was established that precipitation growth up to 20–30 % in winter during 1989–2019 in comparison by 1948–1988, is connected with increase the number of days with weak precipitation and caused by growing duration of liquid precipitation falling. In summer the reducing of rain falling duration was noticed over territory of Belarus. At the same time the significant growth of precipitation maximal totals per day by 20–30 % was detected. The largest growth was found in the south of the country. Dry days number raised by 1–4 days and dry and hot days numbers raised by 1–2 days per decade. The repeatability of atmosphere droughts of different gradations increased up to 2–26 % by the majority of meteorological stations. According to climate projections based on the EURO-CORDEX-11, the growth of yearly and seasonal precipitation is expected over territory of Belarus. The precipitation increase is connected with growth of intense precipitation. At the same time, the dry periods duration is projected to rise in the warm part of the year. These tendencies are characterised the climate extremeness increase in the current century.


Author(s):  
Kamal Tewari ◽  
Saroj Kanta Mishra ◽  
Popat Salunke ◽  
Anupam Dewan

Abstract Antarctica directly impacts the lives of more than half of the world’s population living in the coastal regions. Therefore it is highly desirable to project its climate for the future. But it is a region where the climate models have large inter-modal variability and hence it raises questions about the robustness of the projections available. Therefore, we have examined 87 global models from three modeling consortia (CMIP5, CMIP6, and NEX-GDDP), characterized their fidelity, selected a set of 10 models (MM10) performing satisfactorily, and used them to make the future projection of precipitation and temperature, and assessed the contribution of precipitation towards sea-levels. For the historical period, the multi-model mean (MMM) of CMIP5 performed slightly better than CMIP6 and was worse for NEX-GDDP, with negligible surface temperature bias of approximately 0.5°C and a 17.5% and 19% biases in the mean precipitation noted in both CMIP consortia. These biases considerably reduced in MM10, with 21st century projections showing surface warming of approximately 5.1 - 5.3°C and precipitation increase approximately 44 - 50% against ERA-5 under high-emission scenarios in both CMIP consortia. This projected precipitation increase is much less than that projected using MMM in previous studies with almost the same level of warming, implying approximately 40.0 mm/year contribution of precipitation towards sea-level mitigation against approximately 65.0 mm/year.


2021 ◽  
pp. 1-40

Abstract In this study, we compiled a high-quality, in situ observational dataset to evaluate snow depth simulations from 22 CMIP6 models across high-latitude regions of the Northern Hemisphere over the period 1955–2014. Simulated snow depths have low accuracy (RMSE = 17–36 cm) and are biased high, exceeding the observed baseline (1976–2005) on average (18 ± 16 cm) across the study area. Spatial climatological patterns based on observations are modestly reproduced by the models (NRMSDs of 0.77 ± 0.20). Observed snow depth during the cold season increased by about 2.0 cm over the study period, which is approximately 11% relative to the baseline. The models reproduce decreasing snow depth trends that contradict the observations, but they all indicate a precipitation increase during the cold season. The modeled snow depths are insensitive to precipitation but too sensitive to air temperature; these inaccurate sensitivities could explain the discrepancies between the observed and simulated snow depth trends. Based on our findings, we recommend caution when using and interpreting simulated changes in snow depth and associated impacts.


2021 ◽  
Author(s):  
Nora Farina Specht ◽  
Martin Claussen ◽  
Thomas Kleinen

Abstract. Enhanced summer insolation over North Africa induced a monsoon precipitation increase during the mid-Holocene, about 6000 years ago, and led to a widespread expansion of lakes and wetlands in the present-day Sahara. This expansion of lakes and wetlands is documented in paleoenvironmental sediment records, but the spatially sparse and often discontinuous sediment records provide only a fragmentary picture. Former simulation studies prescribed either a small lake and wetland extent from reconstructions or focused on documented mega-lakes only to investigate their effect on the mid-Holocene climate. In contrast to these studies, we investigate the possible range of mid-Holocene precipitation changes in response to a small lake extent and a potential maximum lake and wetland extent.  Results show that the maximum lake and wetland extent shift the North African rain belt about 3 ° farther northward than the small lake extent. Vegetated wetlands cause a larger precipitation increase than the equally-large lakes due to their high surface roughness. A moisture budget analysis reveals that both, lakes and wetlands, cause an enhanced inland moisture transport and local moisture recycling to their southern side. In contrast, increased moisture advection by the Harmattan winds causes a drying response to the north of the lakes and wetlands. These results indicate that the latitudinal position of the lakes and wetlands influences the northward extension of the African summer monsoon. In the sensitivity experiments, the northern position of West Saharan lakes and wetlands substantially contributes to the strong monsoon northward shift seen in the maximum lake and wetland simulations.


2021 ◽  
Vol 30 (3) ◽  
pp. 480-490
Author(s):  
Serhii V. Klok ◽  
Anatolii O. Kornus

In order to identify and study the main mechanisms of the formation of atmospheric precipitation, in the article the monthly and annual amounts of precipitation were analyzed from the observations results at Vernadsky, Bellingshausen and Grytviken stations. For the last station, a small linear trend of precipitation increase was detected, while at Vernadsky and Bellingshausen station it is practically absent. At the next stage of the study, the characteristics of intra-annual component of the precipitation variability for these stations were obtained. In the annual course, the component of precipitation variability is represented by 3 peaks – March, July and October (at Bellingshausen station March and July only), with a well-pronounced 4-year periodicity. However, data from Vernadsky station indicates a decrease of the seasonal component in time, at Grytviken station the seasonal component is stable, while at Bellingshausen station is increasing of the seasonal component in time. The analysis of long-period components of the precipitation variability of was carried out on the remains of the data obtained after the analysis of the intra-annual component. For the long-period component of precipitation variability at Vernadsky station, five statistically significant harmonics were obtained, which are reflected in periods of 6.8, 2.4, 4.0, 5.1, and 5.3 years. For Grytviken and Bellingshausen stations, 4 statistically significant harmonics were obtained, the periods of which are 4.2, 0.8, 1.7, 8.9 years and 1.5, 2.0, 2.8, 0.2 years, respectively. Today, the main phases of solar activity are well known, which are about 11 years old. The long-period components of precipitation variability obtained in the work for the stations under consideration (to 10.3, 12 and 34.1 years) are identical (close) to the mentioned phase of solar activity. This allowed the authors to draw preliminary conclusions about the influence of solar activity on the conditions for the formation of precipitation in the region under study. However, direct correlation analysis did not confirm this, as in the case of the El Niño influence.


2021 ◽  
Vol 15 (8) ◽  
pp. 3615-3635
Author(s):  
Julien Beaumet ◽  
Michel Déqué ◽  
Gerhard Krinner ◽  
Cécile Agosta ◽  
Antoinette Alias ◽  
...  

Abstract. In this study, we use run-time bias correction to correct for the Action de Recherche Petite Echelle Grande Echelle (ARPEGE) atmospheric model systematic errors on large-scale atmospheric circulation. The bias-correction terms are built using the climatological mean of the adjustment terms on tendency errors in an ARPEGE simulation relaxed towards ERA-Interim reanalyses. The bias reduction with respect to the Atmospheric Model Intercomparison Project (AMIP)-style uncorrected control run for the general atmospheric circulation in the Southern Hemisphere is significant for mean state and daily variability. Comparisons for the Antarctic Ice Sheet with the polar-oriented regional atmospheric models MAR and RACMO2 and in situ observations also suggest substantial bias reduction for near-surface temperature and precipitation in coastal areas. Applying the method to climate projections for the late 21st century (2071–2100) leads to large differences in the projected changes of the atmospheric circulation in the southern high latitudes and of the Antarctic surface climate. The projected poleward shift and strengthening of the southern westerly winds are greatly reduced. These changes result in a significant 0.7 to 0.9 K additional warming and a 6 % to 9 % additional increase in precipitation over the grounded ice sheet. The sensitivity of precipitation increase to temperature increase (+7.7 % K−1 and +9 % K−1) found is also higher than previous estimates. The highest additional warming rates are found over East Antarctica in summer. In winter, there is a dipole of weaker warming and weaker precipitation increase over West Antarctica, contrasted by a stronger warming and a concomitant stronger precipitation increase from Victoria to Adélie Land, associated with a weaker intensification of the Amundsen Sea Low.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 887
Author(s):  
Charles Onyutha ◽  
Arnold Asiimwe ◽  
Brian Ayugi ◽  
Hamida Ngoma ◽  
Victor Ongoma ◽  
...  

We used CMIP6 GCMs to quantify climate change impacts on precipitation and potential evapotranspiration (PET) across water management zones (WMZs) in Uganda. Future changes are assessed based on four Shared Socioeconomic Pathways (SSP) scenarios including SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 over the periods 2021–2040, 2041–2060, 2061–2080, and 2081–2100. Both precipitation and PET are generally projected to increase across all the WMZs. Annual PET in the 2030s, 2050s, 2070s, 2090s will increase in the ranges 1.1–4.0%, 4.8–7.9%, 5.1–11.8%, and 5.3–17.1%, respectively. For the respective periods, annual precipitation will increase in the ranges 4.0–7.8%, 7.8–12.5%, 7.9–19.9%, and 6.9–26.3%. The lower and upper limits of these change ranges for both precipitation and PET are, respectively, derived under SSP1-2.6 and SSP5-8.5 scenarios. Climate change will impact on PET or precipitation disproportionately across the WMZs. While the eastern WMZ (Kyoga) will experience the largest projected precipitation increase especially towards the end of the century, the southern WMZ (Victoria) exhibited the largest PET increase. Our findings are relevant for understanding hydrological impacts of climate change across Uganda, in the background of global warming. Thus, the water sector should devise and implement adaptation measures to impede future socioeconomic and environmental crises in the country.


Author(s):  
Omar V. Müller ◽  
Pier Luigi Vidale ◽  
Benoît Vannière ◽  
Reinhard Schiemann ◽  
Patrick C. McGuire

AbstractPrevious studies showed that high-resolution GCMs overestimate land precipitation when compared against observation-based data. Particularly, high-resolution HadGEM3-GC3.1 shows a significant precipitation increase in mountainous regions, where the scarcity of gauge stations increases the uncertainty of gridded observations and reanalyses. This work evaluates such precipitation uncertainties indirectly through the assessment of river discharge, considering that an increase of ~10% in land precipitation produces ~28% more runoff when the resolution is enhanced from 1° to 0.25°, and ~50% of the global runoff is produced in 27% of global land dominated by mountains. We diagnosed the river flow by routing the runoff generated by HadGEM3-GC3.1 low- and high-resolution simulations. The river flow is evaluated using a set of 344 monitored catchments distributed around the world. We also infer the global discharge by constraining the simulations with observations following a novel approach that implies bias correction in monitored rivers with two methods, and extension of the correction to the river mouth, and along the coast. Our global discharge estimate is 47.4±1.6×103km3yr−1, which is closer to the original high-resolution estimate (50.5 × 103km3yr−1) than to the low-resolution (39.6 × 103km3yr−1). The assessment suggests that high-resolution simulations performbetter in mountainous regions, either because the better-defined orography favours the placement of precipitation in the correct catchment, leading to a more accurate distribution of runoff, or the orographic precipitation increases, reducing the dry runoff bias of coarse resolution simulations. However, high-resolution slightly increases wet biases in catchments dominated by flat terrain. The improvement of model parameterizations and tuning may reduce the remaining errors in high-resolution simulations.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 664
Author(s):  
Xiao Dong ◽  
Renping Lin

In this study, the climatological precipitation increase from July to August over the western North Pacific (WNP) region was investigated through observations and simulations in the Coupled Model Intercomparison Project Phase 6 (CMIP6), atmospheric model simulations and historical experiments. Firstly, observational analysis showed that the precipitation increase is associated with a decrease in the local sea surface temperature (SST), indicating that the precipitation increase is not driven by the change in SST. In addition, the pattern of precipitation increase is similar to the vertical motion change at 500-hPa, suggesting that the precipitation increase is related to the circulation change. Moisture budget analysis further confirmed this relation. In addition to the observational analysis, the outputs from 26 CMIP6 models were further evaluated. Compared with atmospheric model simulations, air–sea coupled models largely improve the simulation of the climatological precipitation increase from July to August. Furthermore, model simulations confirmed that the bias in the precipitation increase is intimately associated with the circulation change bias. Thus, two factors are responsible for the bias of the precipitation increase from July to August in climate models: air–sea coupling processes and the performance in vertical motion change.


Sign in / Sign up

Export Citation Format

Share Document