scholarly journals Of puzzles and pavements: a quantitative exploration of leaf epidermal cell shape

2018 ◽  
Vol 221 (1) ◽  
pp. 540-552 ◽  
Author(s):  
Róza V. Vőfély ◽  
Joseph Gallagher ◽  
Grace D. Pisano ◽  
Madelaine Bartlett ◽  
Siobhan A. Braybrook
2017 ◽  
Vol 43 (3) ◽  
pp. 255-256
Author(s):  
Daniel von Wangenheim ◽  
Darren M. Wells ◽  
Malcolm J. Bennett

Biologija ◽  
2017 ◽  
Vol 63 (2) ◽  
Author(s):  
Seyed Mehdi Talebi ◽  
Mitra Noori ◽  
Habibeh Afzali Naniz

Euphorbia is the largest genus of Euphorbiaceae widely distributed all over the world. The genus members grow naturally in different parts of Iran and nearly 96 species of Euphorbia have been listed in the country. Investigations show that the traits of foliar epidermis have taxonomic values. That is why the features of epidermal leaf anatomy of 18 Euphorbia taxa were studied in the present study. Plant samples were collected from Kerman Province, Iran, and identified using available references. Semi-permanent slides were prepared of adaxial and abaxial leaf epidermis. Then the slides were studied using light microscopy and some epidermal leaf anatomy characteristics stomata types, trichomes, the shape and type of epidermal cell, and their walls were examined. Photomicrographs were taken from each sample. Results showed that stomata type were stable among the species. Not only leaf epidermal cell shapes differed between the taxa, but also in some species they varied between the abaxial and adaxial surfaces. These conditions hold true for cell wall patterns. Some of the studied taxa had simple and uniseriate trichomes on the epidermal surfaces, in most of them trichomes were present on both leaf surfaces, while in one species trichomes were seen on the abaxial surface. Our findings confirmed that some of the anatomical traits, such as the absence or presence of trichomes, epidermal cell shape, and anticlinal cell wall patterns had taxonomic value and are useful in the identification of taxa.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 903-914 ◽  
Author(s):  
N. Harden ◽  
H.Y. Loh ◽  
W. Chia ◽  
L. Lim

The Rho subfamily of Ras-related small GTP-binding proteins is involved in regulation of the cytoskeleton. The cytoskeletal changes induced by two members of this subfamily, Rho and Rac, in response to growth factor stimulation, have dramatic effects on cell morphology. We are interested in using Drosophila as a system for studying how such effects participate in development. We have identified two Drosophila genes, DRacA and DRacB, encoding proteins with homology to mammalian Rac1 and Rac2. We have made transgenic flies bearing dominant inhibitory (N17DRacA), and wild-type versions of the DRacA cDNA under control of an Hsp70 promoter. Expression of the N17DRacA transgene during embryonic development causes a high frequency of defects in dorsal closure which are due to disruption of cell shape changes in the lateral epidermis. Embryonic expression of N17DRacA also affects germband retraction and head involution. The epidermal cell shape defects caused by expression of N17DRacA are accompanied by disruption of a localized accumulation of actin and myosin thought to be driving epidermal cell shape change. Thus the Rho subfamily may be generating localized changes in the cytoskeleton during Drosophila development in a similar fashion to that seen in mammalian and yeast cells. The Rho subfamily is likely to be participating in a wide range of developmental processes in Drosophila through its regulation of the cytoskeleton.


2009 ◽  
Vol 183 (3) ◽  
pp. 718-728 ◽  
Author(s):  
Verónica S. Di Stilio ◽  
Cathie Martin ◽  
Anjelique F. Schulfer ◽  
Caitlin F. Connelly
Keyword(s):  

2017 ◽  
Author(s):  
Rose Aubery ◽  
◽  
Michael A. Urban ◽  
Regan E. Dunn ◽  
Richard S. Barclay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document