germband retraction
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 1)

2019 ◽  
Vol 117 (1) ◽  
pp. 157-169 ◽  
Author(s):  
W. Tyler McCleery ◽  
Jim Veldhuis ◽  
Monica E. Bennett ◽  
Holley E. Lynch ◽  
Xiaoyan Ma ◽  
...  

2018 ◽  
Author(s):  
W. T. McCleery ◽  
J. Veldhuis ◽  
G. W. Brodland ◽  
M. E. Bennett ◽  
M. S. Hutson

ABSTRACTDuring Drosophila embryogenesis, the germband first extends to curl around the posterior end of the embryo, and then retracts back; however, retraction is not simply the reversal of extension. At a tissue level, extension is coincident with ventral furrow formation, and at a cellular level, extension occurs via convergent cell neighbor exchanges in the germband while retraction involves only changes in cell shape. To understand how cell shapes, tissue organization and cellular forces drive germband retraction, we investigate this process using a whole-embryo, surface-wrapped cellular finite element model. This model represents two key epithelial tissues – amnioserosa and germband – as adjacent sheets of 2D cellular finite elements that are wrapped around an ellipsoidal 3D approximation of an embryo. The model reproduces the detailed kinematics of in vivo retraction by fitting just one free model parameter, the tension along germband cell interfaces; all other cellular forces are constrained to follow ratios inferred from experimental observations. With no additional parameter adjustments, the model also reproduces failures of retraction when amnioserosa cells are removed to mimic U-shaped mutants or laser-microsurgery experiments. Surprisingly, retraction in the model is robust to changes in cellular force values, but is critically dependent on starting from a configuration with highly elongated amnioserosa cells. Their extreme cellular elongation is established during the prior process of germband extension and is then used to drive retraction. The amnioserosa is the one tissue whose cellular morphogenesis is reversed in germband extension and retraction – serving as a store of morphological information that coordinates the forces needed to retract the germband back to its pre-extension position and shape. In this case, and perhaps more generally, cellular force strengths are less important than the carefully established cell shapes that direct them.


2015 ◽  
Vol 112 (30) ◽  
pp. 9376-9381 ◽  
Author(s):  
Yu Matsuura ◽  
Yoshitomo Kikuchi ◽  
Toru Miura ◽  
Takema Fukatsu

Symbiosis often entails the emergence of novel adaptive traits in organisms. Microbial symbionts are indispensable for diverse insects via provisioning of essential nutrients, wherein novel host cells and organs for harboring the microbes, called bacteriocytes and bacteriomes, have evolved repeatedly. Molecular and developmental mechanisms underpinning the emergence of novel symbiotic cells and organs comprise an unsolved question in evolutionary developmental biology. Here, we report that a conserved homeotic gene, Ultrabithorax, plays a pivotal role in the bacteriocyte differentiation in a hemipteran insect Nysius plebeius. During embryonic development, six pairs of aggregated presumptive bacteriocytes appear on both sides of six abdominal segments, incorporate the symbiotic bacteria at the stage of germband retraction, and fuse into a pair of lateral bacteriomes at the stage of germband flip, where bacteriocyte-associated Ultrabithorax expression coincides with the symbiont infection process. Suppression of Ultrabithorax expression by maternal RNA interference results in disappearance of the bacteriocytes and the symbiont localization therein, suggesting that Ultrabithorax is involved in differentiation of the host cells for symbiosis. Suppression of other homeotic genes abdominal-A and Antennapedia disturbs integrity and positioning of the bacteriomes, affecting the configuration of the host organs for symbiosis. Our findings unveil the molecular and developmental mechanisms underlying the bacteriocyte differentiation, which may have evolved either via cooption of the transcription factors for inducing the novel symbiotic cells, or via revival of the developmental pathway for the bacteriocytes that had existed in the ancestral hemipterans.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2299-2307 ◽  
Author(s):  
Q.J. Li ◽  
T.M. Pazdera ◽  
J.S. Minden

The Drosophila melanogaster embryo ordinarily undergoes thirteen cycles of rapid syncytial division followed by three rounds of cellular division for most cells. Strict regulation of the number of divisions is believed to be essential for normal patterning and development. To determine how the embryo responds to hyperplastic growth, we have examined epidermal development in embryos that experience additional rounds of mitosis as the result of ectopic Cyclin E expression. We observed that the cell density in the epidermis nearly doubled within 1 hour of Cyclin E induction. The spacing and width of the ENGRAILED and wingless stripes was unchanged, but the cell density within the stripes was increased. By 4 hours after Cyclin E induction, the cell density had returned to almost normal values. The embryos developed, albeit more slowly, to produce viable larvae and adults. The excess cells were removed by apoptosis in a reaper-dependent fashion as evidenced by increased reaper expression. Embryos lacking cell death in the abdomen exhibited changes in ENGRAILED expression. In addition, germband retraction and dorsal closure were slower than normal. Ectopic Cyclin E expression in cell-death-deficient embryos exacerbated the germband retraction and ENGRAILED-expression defects.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 903-914 ◽  
Author(s):  
N. Harden ◽  
H.Y. Loh ◽  
W. Chia ◽  
L. Lim

The Rho subfamily of Ras-related small GTP-binding proteins is involved in regulation of the cytoskeleton. The cytoskeletal changes induced by two members of this subfamily, Rho and Rac, in response to growth factor stimulation, have dramatic effects on cell morphology. We are interested in using Drosophila as a system for studying how such effects participate in development. We have identified two Drosophila genes, DRacA and DRacB, encoding proteins with homology to mammalian Rac1 and Rac2. We have made transgenic flies bearing dominant inhibitory (N17DRacA), and wild-type versions of the DRacA cDNA under control of an Hsp70 promoter. Expression of the N17DRacA transgene during embryonic development causes a high frequency of defects in dorsal closure which are due to disruption of cell shape changes in the lateral epidermis. Embryonic expression of N17DRacA also affects germband retraction and head involution. The epidermal cell shape defects caused by expression of N17DRacA are accompanied by disruption of a localized accumulation of actin and myosin thought to be driving epidermal cell shape change. Thus the Rho subfamily may be generating localized changes in the cytoskeleton during Drosophila development in a similar fashion to that seen in mammalian and yeast cells. The Rho subfamily is likely to be participating in a wide range of developmental processes in Drosophila through its regulation of the cytoskeleton.


Development ◽  
1992 ◽  
Vol 115 (3) ◽  
pp. 853-872 ◽  
Author(s):  
R. Clifford ◽  
T. Schupbach

The torpedo (DER) gene of Drosophila, which encodes a receptor tyrosine kinase of the EGF receptor subfamily, is essential for oogenesis, embryogenesis and imaginal disc development. To gain insight into the nature of the signals transduced by the torpedo product, we have characterized the gene's loss-of-function phenotype in the embryo. Through the induction of germline clones, we provide a genetic demonstration that maternal torpedo product does not contribute to zygotic development. Thus, the embryonic lethal phenotypes examined accurately reflect the consequences of eliminating all gene activity from the zygote. Temperature-shift experiments with the conditional allele topIF26 show that torpedo is required at two distinct times during embryonic development: the gene is first needed for germband retraction and for the production of anterior, posterior and ventral cuticle, then later for the secretion of ventral denticles. Since denticle formation can be severely disrupted in topIF26 animals without affecting cuticle production, the early and late requirements for torpedo appear to be functionally unrelated. torpedo, therefore, is required at multiple times in the development of the ventral epidermis, and may transduce qualitatively different signals. Since the early requirement for torpedo correlates with the first visible defect in embryonic development, increased cell death in the amnioserosa, cephalic ectoderm and ventral epidermis, the abnormalities in cuticle production and germband shortening seen in the mutant may be secondary consequences of a primary defect in cell viability. Given that the onset of cell death in torpedo embryos is not preceded by any obvious defects in mitogenesis, the establishment of cell identities or the maintenance of gene expression, it is possible that torpedo transduces a signal necessary for cell survival per se during early embryogenesis. During late embryogenesis, torpedo may mediate the reception of a second signal which regulates ventral epidermal cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document