Evolutionary stable sex ratios with non‐facultative male‐eggs first sex allocation in fig wasps

Oikos ◽  
2019 ◽  
Vol 128 (6) ◽  
pp. 859-868 ◽  
Author(s):  
Nico Chung ◽  
Jason Pienaar ◽  
Jaco M. Greeff
2011 ◽  
Vol 25 (3) ◽  
pp. 254-263 ◽  
Author(s):  
Salah Ghana ◽  
Nazia Suleman ◽  
Stephen G. Compton

2021 ◽  
Author(s):  
◽  
Elizabeth Victoria Berkeley

<p>The application of sex allocation theory can provide useful insight into endangered rhinoceros biology to improve in situ and ex situ conservation efforts by understanding the factors that cause a female to produce one sex of calf. By decreasing the birth sex ratio (number of males born per number of females born) in a population it may be possible to increase population growth rates. The first aim was to determine if an environmentally cued sex allocation response occurred in black rhinos. By examining rainfall and calf sex records in a wild black rhino population, I identified that birth sex ratios increase in rainy seasons and rainy years. Mothers were more likely to be observed with male calves if they conceived during the wet season (57.3% male) than during the dry season (42.9% male). Mothers were more likely to raise male calves if they conceived during wet years (60.2% male) than during dry years (46.1% male). Next, I examined whether pulsatile or random variation in sex ratios of different magnitudes, as might occur under changes in climate patterns, would be detrimental to rhinoceros population growth. Results demonstrated that while random increases in the magnitude of birth sex ratio variation, in either direction, increased population survival probability up to 0.907, sequential pulsed years of birth sex ratio bias had the opposite effect on population performance down to a survival probability of 0.619. Furthermore, for both scenarios, populations of less than 50 animals are particularly vulnerable to extinction. Since the sex biases observed in the captive rhinoceros population were attributed to several factors, I used an information theoretic approach to evaluate the relative importance of different hypotheses for birth sex bias for predicting calf sex. The results demonstrated that none of the models tested were greatly predictive of calf sex. Suspecting that the mechanisms that were cueing calf sex occur close to the time of conception and were nutritionally cued, in the final experiment, I measured changes in blood glucose in white rhinos after they ate different meals. At 90 minutes, serum glucose levels in rhinos eating the 10 % lucerne hay diet were significantly lower than the 5% glucose and 10% glucose diets but not the 10% pellet nor 10% grass hay diets. This is the first time such an experiment has been published in a wildlife species and not only demonstrates the feasibility of training rhinos for successive blood draws but also that captive diets are low glycemic for white rhinos. Overall, my research confirmed that an environmentally cued sex allocation response does occur in African rhinos, and changes in the duration and magnitude of sex ratio patterns can decrease population growth and increase potential for extinction. Additionally, none of the previous hypotheses for the suspected male-sex bias in captive born rhinos were influential on calf sex, which shifts the focus of sex allocation research in rhinos to more acute signals around the time of conception, such as changes in diet and body condition.</p>


2020 ◽  
Vol 16 (6) ◽  
pp. 20190929
Author(s):  
Renée C. Firman ◽  
Jamie N. Tedeschi ◽  
Francisco Garcia-Gonzalez

Mammal sex allocation research has focused almost exclusively on maternal traits, but it is now apparent that fathers can also influence offspring sex ratios. Parents that produce female offspring under conditions of intense male–male competition can benefit with greater assurance of maximized grand-parentage. Adaptive adjustment in the sperm sex ratio, for example with an increase in the production of X-chromosome bearing sperm (CBS), is one potential paternal mechanism for achieving female-biased sex ratios. Here, we tested this mechanistic hypothesis by varying the risk of male–male competition that male house mice perceived during development, and quantifying sperm sex ratios at sexual maturity. Our analyses revealed that males exposed to a competitive ‘risk’ produced lower proportions of Y-CBS compared to males that matured under ‘no risk’ of competition. We also explored whether testosterone production was linked to sperm sex ratio variation, but found no evidence to support this. We discuss our findings in relation to the adaptive value of sperm sex ratio adjustments and the role of steroid hormones in socially induced sex allocation.


1999 ◽  
Vol 46 (2) ◽  
pp. 95-102 ◽  
Author(s):  
Mark D. E. Fellowes ◽  
Steve G. Compton ◽  
James M. Cook

Oikos ◽  
1999 ◽  
Vol 87 (3) ◽  
pp. 520 ◽  
Author(s):  
Prarthana Kathuria ◽  
Jaco M. Greeff ◽  
Steve G. Compton ◽  
K. N. Ganeshaiah

1998 ◽  
Vol 88 (1) ◽  
pp. 37-45 ◽  
Author(s):  
K.M. Heinz

AbstractAn often encountered problem associated with augmentative and inundative biological control programmes is the high cost of producing sufficient numbers of natural enemies necessary to suppress pest populations within the time constraints imposed by ephemeral agroecosystems. In many arrhenotokous parasitoids, overproduction of males in mass-rearing cultures inflates costs (per female) and thus limits the economic feasibility of these biological control programmes. Within the context of existing production technologies, experiments were conducted to determine if the sex ratio ofCatolaccus grandis(Burks), an ectoparasitoid of the boll weevilAnthonomous grandisBoheman, varied as a function of boll weevil larval size. Results from natural and manipulative experiments demonstrate the following behavioural characteristics associated with C.grandissex allocation behaviour: (i) femaleC. grandisoffspring are produced on large size hosts and male offspring are produced on small hosts; (ii) whether a host is considered large or small depends upon the overall distribution of host sizes encountered by a female parasitoid; and (iii) female parasitoids exhibit a greater rate of increase in body size with host size than do male parasitoids. The observed patterns cannot be explained by sex-specific mortality of immature parasitoids developing on the different host size categories. In subsequent experiments, laboratory cultures ofC. grandisexposed daily to successively larger sizes ofA. grandislarvae produced successively greater female biased offspring sex ratios, cultures exposed daily to successively smaller sizes of host larvae produced successively greater male biased offspring sex ratios, and cultures exposed daily to equivalent host size distributions over time maintained a uniform offspring sex ratio. By increasing the average size ofA. grandislarval hosts exposed toC. grandisby 2.5 mg per day in mass rearing cultures, the percentage of male progeny can be reduced from 33% to 23% over a period of four consecutive exposure days.


2006 ◽  
Vol 2 (2) ◽  
pp. 229-231 ◽  
Author(s):  
Bruce C Robertson ◽  
Graeme P Elliott ◽  
Daryl K Eason ◽  
Mick N Clout ◽  
Neil J Gemmell

Supplementary feeding is often a key tool in the intensive management of captive and threatened species. Although it can increase such parameters as breeding frequency and individual survival, supplementary feeding may produce undesirable side effects that increase overall extinction risk. Recent attempts to increase breeding frequency and success in the kakapo Strigops habroptilus using supplementary feeding inadvertently resulted in highly male-biased chick sex ratios. Here, we describe how the inclusion of sex allocation theory has remedied this conservation dilemma. Our study is the first to manipulate chick sex ratios in an endangered species by altering maternal condition and highlights the importance of incorporating evolutionary theory into modern conservation practice.


Behaviour ◽  
1990 ◽  
Vol 114 (1-4) ◽  
pp. 137-147 ◽  
Author(s):  
H.C.J. Godfray ◽  
I.C.W. Hardy

Abstract1) Sex ratio theory has assumed that females can produce offspring of both sexes. It has been suggested that some females in haplodiploid populations are only able to produce sons (constrained sex allocation), for example because they are virgin. The presence of such females influences the optimal sex ratio of unconstrained females. The relevance of these ideas to field sex ratios is largely untested. 2) The frequencies of constrained oviposition in three Drosophila parasitoid species are estimated. Constrained, ovipositing females were distinguished by the absence of sperm in the spermatheca. Constrained females were absent or rare in these species. 3) We review data from the literature that allow an estimate of the frequency of constrained females. 4) We conclude that the available evidence suggests that while constrained oviposition is uncommon, there are some species in which constrained females are sufficiently common to select for an observable sex ratio bias by unconstrained females.


Sign in / Sign up

Export Citation Format

Share Document