Estimating the Frequency of Constrained Sex Allocation in Field Populations of Hymenoptera

Behaviour ◽  
1990 ◽  
Vol 114 (1-4) ◽  
pp. 137-147 ◽  
Author(s):  
H.C.J. Godfray ◽  
I.C.W. Hardy

Abstract1) Sex ratio theory has assumed that females can produce offspring of both sexes. It has been suggested that some females in haplodiploid populations are only able to produce sons (constrained sex allocation), for example because they are virgin. The presence of such females influences the optimal sex ratio of unconstrained females. The relevance of these ideas to field sex ratios is largely untested. 2) The frequencies of constrained oviposition in three Drosophila parasitoid species are estimated. Constrained, ovipositing females were distinguished by the absence of sperm in the spermatheca. Constrained females were absent or rare in these species. 3) We review data from the literature that allow an estimate of the frequency of constrained females. 4) We conclude that the available evidence suggests that while constrained oviposition is uncommon, there are some species in which constrained females are sufficiently common to select for an observable sex ratio bias by unconstrained females.

2014 ◽  
Vol 10 (5) ◽  
pp. 20140159 ◽  
Author(s):  
B. Vanthournout ◽  
K. Deswarte ◽  
H. Hammad ◽  
T. Bilde ◽  
B. Lambrecht ◽  
...  

Producing equal amounts of male and female offspring has long been considered an evolutionarily stable strategy. Nevertheless, exceptions to this general rule (i.e. male and female biases) are documented in many taxa, making sex allocation an important domain in current evolutionary biology research. Pinpointing the underlying mechanism of sex ratio bias is challenging owing to the multitude of potential sex ratio-biasing factors. In the dwarf spider, Oedothorax gibbosus , infection with the bacterial endosymbiont Wolbachia results in a female bias. However, pedigree analysis reveals that other factors influence sex ratio variation. In this paper, we investigate whether this additional variation can be explained by the unequal production of male- and female-determining sperm cells during sperm production. Using flow cytometry, we show that males produce equal amounts of male- and female-determining sperm cells; thus bias in sperm production does not contribute to the sex ratio bias observed in this species. This demonstrates that other factors such as parental genes suppressing endosymbiont effects and cryptic female choice might play a role in sex allocation in this species.


2011 ◽  
Vol 80 (2) ◽  
pp. 93-97 ◽  
Author(s):  
Dagmara Kwolek ◽  
Andrzej J. Joachimiak

Sex-ratio bias in seeds of dioecious <em>Rumex</em> species with sex chromosomes is an interesting and still unsettled issue. To resolve gender among seeds of <em>R. acetosa</em> and <em>R. thyrsiflorus</em> (two species with an XX/XY1Y2 sex chromosome system), this work applied a PCR-based method involving DNA markers located on Y chromosomes. Both species showed female-biased primary sex ratios, with female bias greater in <em>R. acetosa</em> than in <em>R. thyrsiflorus</em>. The observed predominance of female seeds is consistent with the view that the female biased sex ratios in <em>Rumex </em>are conditioned not only postzygotically but also prezygotically.


2020 ◽  
Author(s):  
Fred E. Gouker ◽  
Craig H. Carlson ◽  
Junzhu Zou ◽  
Luke Evans ◽  
Chase R. Crowell ◽  
...  

AbstractPremiseSexual dimorphism in dioecious plant species is often not obvious or is absent. Dioecious species populations also often exhibit deviations from expected sex ratios. Previous studies on members of the Salicaceae family have shown strong, partial, and no sexual dimorphism. Some studies have shown sex-biased ratios in several Salix spp., however, S. purpurea has never been examined for evidence of sexual dimorphism or for the presence of sex-ratio bias, and therefore a comprehensive phenotypic study is needed to fill this knowledge gap.MethodsThis study examined a suite of morphological, phenological, physiological and wood composition traits from multi-environment and multi-year replicated field trials in a diversity panel of unrelated S. purpurea accessions and in full-sib F1 and F2 families produced through controlled cross pollinations to test for sexual dimorphism and sex ratio bias.Key ResultsSignificant evidence of sexual dimorphism was found in vegetative traits with greater means for many traits in male genotypes compared to females across three populations of S. purpurea, measured across multiple years that were highly predictive of biomass yield. Male plants exhibited greater nitrogen accumulation under fertilizer amendment as measured by SPAD in the diversity panel, and males showed greater susceptibility to fungal infection by Melampsora spp in the F2 family. There were also consistent female-biased sex ratios in both the F1 and F2 families.ConclusionsThese results provide the first evidence of sexual dimorphism in S. purpurea and also confirm the prevalence of female-biased sex ratios previously found in other Salix species.


The Condor ◽  
2001 ◽  
Vol 103 (2) ◽  
pp. 385-389 ◽  
Author(s):  
Patricia Szczys ◽  
Ian C. T. Nisbet ◽  
Jeremy J. Hatch ◽  
Richard V. Kesseli

Abstract Several hypotheses have been proposed to explain facultative manipulation of sex ratios in birds, but existing data are inconsistent within and among species, and do not clearly support any one of the hypotheses. The sex ratio among breeding Roseate Terns (Sterna dougallii) at Bird Island, Massachusetts is female-biased (56%). We sought to determine at what stage of the life cycle this sex ratio bias is established. We monitored 461 eggs from 252 nests and, using molecular markers, we sexed 342 chicks at hatching and followed them to a stage when survival (or non-survival) to fledging could be inferred. We found that the sex ratio at hatching (and, by inference, at fertilization) was biased toward females (55%). This bias was significant in chicks from first-laid eggs (58%) but not second-laid eggs (48%). We also found that the overall bias increased (to 56.6%) during the chick stage through differential loss of male chicks.


2017 ◽  
Vol 284 (1861) ◽  
pp. 20171159 ◽  
Author(s):  
Aurelio F. Malo ◽  
Felipe Martinez-Pastor ◽  
Francisco Garcia-Gonzalez ◽  
Julián Garde ◽  
Jonathan D. Ballou ◽  
...  

Sex ratio allocation has important fitness consequences, and theory predicts that parents should adjust offspring sex ratio in cases where the fitness returns of producing male and female offspring vary. The ability of fathers to bias offspring sex ratios has traditionally been dismissed given the expectation of an equal proportion of X- and Y-chromosome-bearing sperm (CBS) in ejaculates due to segregation of sex chromosomes at meiosis. This expectation has been recently refuted. Here we used Peromyscus leucopus to demonstrate that sex ratio is explained by an exclusive effect of the father, and suggest a likely mechanism by which male-driven sex-ratio bias is attained. We identified a male sperm morphological marker that is associated with the mechanism leading to sex ratio bias; differences among males in the sperm nucleus area (a proxy for the sex chromosome that the sperm contains) explain 22% variation in litter sex ratio. We further show the role played by the sperm nucleus area as a mediator in the relationship between individual genetic variation and sex-ratio bias. Fathers with high levels of genetic variation had ejaculates with a higher proportion of sperm with small nuclei area. This, in turn, led to siring a higher proportion of sons (25% increase in sons per 0.1 decrease in the inbreeding coefficient). Our results reveal a plausible mechanism underlying unexplored male-driven sex-ratio biases. We also discuss why this pattern of paternal bias can be adaptive. This research puts to rest the idea that father contribution to sex ratio variation should be disregarded in vertebrates, and will stimulate research on evolutionary constraints to sex ratios—for example, whether fathers and mothers have divergent, coinciding, or neutral sex allocation interests. Finally, these results offer a potential explanation for those intriguing cases in which there are sex ratio biases, such as in humans.


2019 ◽  
Vol 73 (6) ◽  
Author(s):  
Matthias Tschumi ◽  
Jolanda Humbel ◽  
Joscha Erbes ◽  
Julien Fattebert ◽  
Jochen Fischer ◽  
...  

Evolution ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 1049-1055 ◽  
Author(s):  
Steven Freedberg ◽  
Michael J. Wade

2021 ◽  
Author(s):  
◽  
Elizabeth Victoria Berkeley

<p>The application of sex allocation theory can provide useful insight into endangered rhinoceros biology to improve in situ and ex situ conservation efforts by understanding the factors that cause a female to produce one sex of calf. By decreasing the birth sex ratio (number of males born per number of females born) in a population it may be possible to increase population growth rates. The first aim was to determine if an environmentally cued sex allocation response occurred in black rhinos. By examining rainfall and calf sex records in a wild black rhino population, I identified that birth sex ratios increase in rainy seasons and rainy years. Mothers were more likely to be observed with male calves if they conceived during the wet season (57.3% male) than during the dry season (42.9% male). Mothers were more likely to raise male calves if they conceived during wet years (60.2% male) than during dry years (46.1% male). Next, I examined whether pulsatile or random variation in sex ratios of different magnitudes, as might occur under changes in climate patterns, would be detrimental to rhinoceros population growth. Results demonstrated that while random increases in the magnitude of birth sex ratio variation, in either direction, increased population survival probability up to 0.907, sequential pulsed years of birth sex ratio bias had the opposite effect on population performance down to a survival probability of 0.619. Furthermore, for both scenarios, populations of less than 50 animals are particularly vulnerable to extinction. Since the sex biases observed in the captive rhinoceros population were attributed to several factors, I used an information theoretic approach to evaluate the relative importance of different hypotheses for birth sex bias for predicting calf sex. The results demonstrated that none of the models tested were greatly predictive of calf sex. Suspecting that the mechanisms that were cueing calf sex occur close to the time of conception and were nutritionally cued, in the final experiment, I measured changes in blood glucose in white rhinos after they ate different meals. At 90 minutes, serum glucose levels in rhinos eating the 10 % lucerne hay diet were significantly lower than the 5% glucose and 10% glucose diets but not the 10% pellet nor 10% grass hay diets. This is the first time such an experiment has been published in a wildlife species and not only demonstrates the feasibility of training rhinos for successive blood draws but also that captive diets are low glycemic for white rhinos. Overall, my research confirmed that an environmentally cued sex allocation response does occur in African rhinos, and changes in the duration and magnitude of sex ratio patterns can decrease population growth and increase potential for extinction. Additionally, none of the previous hypotheses for the suspected male-sex bias in captive born rhinos were influential on calf sex, which shifts the focus of sex allocation research in rhinos to more acute signals around the time of conception, such as changes in diet and body condition.</p>


2018 ◽  
Vol 329 (6-7) ◽  
pp. 373-381 ◽  
Author(s):  
Nicola J. Nelson ◽  
Susan N. Keall ◽  
Jeanine M. Refsnider ◽  
Anna L. Carter

Sign in / Sign up

Export Citation Format

Share Document