scholarly journals Cross‐Sectional Area Measurement Techniques of Soft Tissue: A Literature Review

2020 ◽  
Vol 12 (6) ◽  
pp. 1547-1566
Author(s):  
Xiao‐jing Ge ◽  
Lei Zhang ◽  
Gang Xiang ◽  
Yong‐cheng Hu ◽  
Deng‐xing Lun
2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Kelly H. Schmidt ◽  
William R. Ledoux

Ligament cross-sectional areas are difficult to determine because ligaments are soft tissues, can be very short, and may be deep between bones. However, accurate measurements are required for determining the material properties from mechanical testing. Many techniques have been tried, but most suffer from one or more of the following: tissue deformation, tissue destruction, submersion of the tissue in saline, the need for a clear line of site, the inability to detect concavities, or poorly defined cross-sectional perimeters. Molding techniques have been used but have been limited by material issues such as large shrinkages, the inability to capture small detail, or the need to destroy the mold to remove the ligament. In this study, we developed a suitable molding and casting technique without systematic shrinkage that could accurately capture the odd shapes and concavities of foot and ankle ligaments with small clearances between bones. Metal rods of 1.62 mm, 2.90 mm, 3.18 mm, and 9.43 mm in diameter were molded using a liquid silicone rubber and cast with polyurethane. The effect of cutting the mold for specimen removal was investigated, and similar tests were done in the presence of saline. Image analysis software was used to determine the cross-sectional areas from photographs of cut castings. In addition, four different ligaments (each n=5) were dissected, molded, and cast. The cross-sectional area of each ligament was obtained. The maximum difference in area for all cases was 2.00%, with the majority being less than 1.00%; the overall root mean square error was 0.334 mm2 or 0.97%. Neither cutting the mold for specimen removal nor the presence of saline affected the cross-sectional area of the castings. Various representative foot and ankle ligaments were also molded and cast to capture fine detail of the ligament midsubstance including concavities. We have developed a method of measuring ligament cross-sectional area that can overcome the limitations of other area measurement techniques, while accounting for the complicated anatomy of the bones of the foot. The method was validated using metal rods of known diameters, and a representative set foot ligaments (N=20) was analyzed.


1990 ◽  
Vol 24 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Ed Vanbavel ◽  
Trudi Mooij ◽  
Maurice J.M.M. Giezeman ◽  
Jos A.E. Spaan

Radiology ◽  
2011 ◽  
Vol 259 (3) ◽  
pp. 808-815 ◽  
Author(s):  
Andrea S. Klauser ◽  
Ethan J. Halpern ◽  
Ralph Faschingbauer ◽  
Florian Guerra ◽  
Carlo Martinoli ◽  
...  

2019 ◽  
Vol 22 (8) ◽  
pp. 721-728
Author(s):  
Laura H Rayhel ◽  
Jessica M Quimby ◽  
Eric M Green ◽  
Valerie J Parker ◽  
Shasha Bai

Objectives The aim of this study was to evaluate the intra- and inter-rater reliability of epaxial muscle cross-sectional area measurement on feline CT images and to determine the relationship between normalized epaxial muscle area (EMA) and subjective muscle condition score (MCS). Methods Feline transverse CT images including the junction of the 13th thoracic vertebrae/13th rib head were retrospectively reviewed. Right and left epaxial muscle circumference and vertebral body height were measured and an average normalized EMA (ratio of epaxial area:vertebral height) was calculated for each image. Measurements were performed by three individuals blinded to the clinical data and were repeated 1 month later. Intra- and inter-rater reliability of EMA was assessed with concordance correlation coefficient (CCC), and Bland–Altman analysis was performed to assess bias and limits of agreement (LoA) between and within observers at different time points. In cats for which MCS data were available, EMA was compared between differing MCSs via the Kruskal–Wallis test, with Bonferroni-corrected Wilcoxon rank-sum post-hoc analysis. Results In total, 101 CT scans met the inclusion criteria for reliability analysis, 29 of which had muscle condition information available for analysis. Intra-rater EMA CCC ranged from 0.84 to 0.99 with minimal bias (range –0.16 to 0.08) and narrow LoA. Inter-rater EMA CCC ranged from 0.87 to 0.94, bias was larger (range –0.46 to 0.66) and LoA were wider when assessed between observers. Median EMA was significantly lower in cats with severe muscle atrophy (2.76, range 1.28–3.96) than in all other MCS groups ( P <0.0001 for all comparisons). Conclusions and relevance Measurement of EMA on CT showed strong intra-rater reliability, and median EMA measurements were significantly lower in cats with severe muscle wasting, as assessed on physical examination. Further studies correlating EMA to lean muscle mass in cats are needed to determine whether this method may be useful to quantify muscle mass in patients undergoing a CT scan.


Spinal Cord ◽  
2014 ◽  
Vol 52 (8) ◽  
pp. 616-620 ◽  
Author(s):  
C Wang ◽  
R C Tam ◽  
E Mackie ◽  
D K B Li ◽  
A L Traboulsee

Sign in / Sign up

Export Citation Format

Share Document