epaxial muscle
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Miriam A. Holzman ◽  
Abigail Ryckman ◽  
Tova M. Finkelstein ◽  
Kim Landry-Truchon ◽  
Kyra A. Schindler ◽  
...  

Brown adipose tissue (BAT) plays critical thermogenic, metabolic and endocrine roles in mammals, and aberrant BAT function is associated with metabolic disorders including obesity and diabetes. The major BAT depots are clustered at the neck and forelimb levels, and arise largely within the dermomyotome of somites, from a common progenitor with skeletal muscle. However, many aspects of BAT embryonic development are not well understood.Hoxa5patterns other tissues at the cervical and brachial levels, including skeletal, neural and respiratory structures. Here, we show thatHoxa5also positively regulates BAT development, while negatively regulating formation of epaxial skeletal muscle. HOXA5 protein is expressed in embryonic preadipocytes and adipocytes as early as embryonic day 12.5.Hoxa5null mutant embryos and rare, surviving adults show subtly reduced iBAT and sBAT formation, as well as aberrant marker expression, lower adipocyte density and altered lipid droplet morphology. Conversely, the epaxial muscles that arise from a common dermomyotome progenitor are expanded inHoxa5mutants. Conditional deletion ofHoxa5withMyf5/Crecan reproduce both BAT and epaxial muscle phenotypes, indicating that HOXA5 is necessary withinMyf5-positive cells for proper BAT and epaxial muscle development. However, recombinase-based lineage tracing shows thatHoxa5does not act cell-autonomously to repress skeletal muscle fate. Interestingly,Hoxa5-dependent regulation of adipose-associated transcripts is conserved in lung and diaphragm, suggesting a shared molecular role forHoxa5in multiple tissues. Together, these findings establish a role forHoxa5in embryonic BAT development.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2305
Author(s):  
David Argüelles ◽  
Mireya Becero ◽  
Ana Muñoz ◽  
Aritz Saitua ◽  
Toni Ramón ◽  
...  

Capacitive resistive electric transfer (CRET), a radiofrequency at 448 kHz, increases flexibility in quadricep muscles of human athletes. To assess whether CRET would result in clinical and biomechanical improvements in horses with thoracolumbar pain, 18 sport horses were divided into two groups: CRET (n = 9), subjected to four CRET sessions, during two consecutive weeks, and SHAM (n = 9), subjected to the same procedure with the device off. Clinical examination and accelerometry were performed before and after the four sessions. During the study, horses were in training and in active competition, and did not receive any other treatment. Mann-Whitney and a Wilcoxon matched pair tests were used to compare between the SHAM and CRET groups and before and after the intervention, respectively. CRET horses showed increased dorsoventral (p < 0.002), mediolateral and total power (p < 0.01) after the intervention, suggesting increased back flexibility. SHAM horses did not show any of these modifications after the intervention. No changes were found in the dorsoventral displacement of the gravity center in either group. Thoracolumbar pain decreased one degree after CRET (p = 0.002), and it did not change after SHAM. Epaxial muscle pain decreased two degrees after CRET (p = 0.03) and one degree after SHAM (p = 0.01). These results reflected that CRET therapy would increase back flexibility and decrease thoracolumbar and epaxial pain.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1044 ◽  
Author(s):  
Sue Dyson ◽  
Danica Pollard

A Ridden Horse Pain Ethogram (RHpE) comprising 24 behaviours has been developed to facilitate the identification of musculoskeletal pain. The aim was to further test the RHpE by its application to a convenience sample (n = 60) of sports horses and riding school horses in regular work and assumed by their owners to be working comfortably. All horses performed a purpose-designed dressage-type test of 8.5 min duration in walk, trot and canter, with their normal rider. The RHpE was applied retrospectively to video recordings acquired in a standardised fashion. Seventy-three percent of horses were lame (≤ grade 2/8) on one or more limbs; 47% had gait abnormalities in canter. Ridden Horse Pain Ethogram scores ranged from 3 to 16/24 (median 9); rider skill score ranged from 2.5 to 8/10 (median 4.75). The effect of horse age, breed, sex, work-discipline, epaxial muscle hypertonicity or pain, an ill-fitting saddle, rider skill score, the presence of lameness or gait abnormalities in canter on the RHpE score was assessed using Poisson regression. Two variables were retained in the final multivariable analysis, rider skill score as a continuous variable (p < 0.001), and lameness (p = 0.008). A RHpE score ≥8 was a good indicator of the presence of musculoskeletal pain.


Author(s):  
Nydia Edith Reyes Rodríguez ◽  
Vicente Vega Sánchez ◽  
Fabián Ricardo Gómez de Anda ◽  
Patricia Beatriz García Reyna ◽  
Luis González de la Rosa ◽  
...  

Abstract Anisakisspp. nematodes are potentially zoonotic parasites; that infects a wide variety of aquatic species worldwide, with marine fish being the paratenic hosts. The aim of study was identify the presence of Anisakidae nematodes, and other parasites in Mugil curema . A total of 96 M . curema obtained from local markets in Tulancingo, Hidalgo, Mexico, were analyzed by necropsy. Only five M . curema present nematode collection in epaxial muscle. The tissues with the highest prevalence of parasites were identified, and samples of epaxial muscle with larval migration analyzed by histopathology. Visible parasites in necropsy tissues were classified according to their morphology. Nematode found in the liver were Contracaecum spp. (41.17%) and Pseudoterranova spp. third stage (7.36%); in the caudal part of the kidney were Anisakis spp. (13.23%), Pseudoterranova spp. third stage (11.77%) and Contracaecum spp. (5.88%); and in epaxial muscle were Anisakis spp. Larva I (5.88%) and Pseudoterranova spp (4.42%). In one fish, Clinostomum spp. was detected in epaxial caudal muscle. The present work reports for the first time the presence of nematodes of the family Anisakidae and Clinostonum spp. metacercariae, with zoonotic potential, in M . curema intended for human consumption in Tulancingo, Hidalgo, Mexico.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
S E Pierce ◽  
L P Lamas ◽  
L Pelligand ◽  
N Schilling ◽  
J R Hutchinson

Synopsis Salamanders and newts (urodeles) are often used as a model system to elucidate the evolution of tetrapod locomotion. Studies range from detailed descriptions of musculoskeletal anatomy and segment kinematics, to bone loading mechanics and inferring central pattern generators. A further area of interest has been in vivo muscle activity patterns, measured through electromyography (EMG). However, most prior EMG work has primarily focused on muscles of the forelimb or hindlimb in specific species or the axial system in others. Here we present data on forelimb, hindlimb, and epaxial muscle activity patterns in one species, Salamandra salamandra, during steady state walking. The data are calibrated to limb stride cycle events (stance phase, swing phase), allowing direct comparisons to homologous muscle activation patterns recorded for other walking tetrapods (e.g., lizards, alligators, turtles, mammals). Results demonstrate that Salamandra has similar walking kinematics and muscle activity patterns to other urodele species, but that interspecies variation does exist. In the forelimb, both the m. dorsalis scapulae and m. latissimus dorsi are active for 80% of the forelimb swing phase, while the m. anconaeus humeralis lateralis is active at the swing–stance phase transition and continues through 86% of the stance phase. In the hindlimb, both the m. puboischiofemoralis internus and m. extensor iliotibialis anterior are active for 30% of the hindlimb swing phase, while the m. caudofemoralis is active 65% through the swing phase and remains active for most of the stance phase. With respect to the axial system, both the anterior and posterior m. dorsalis trunci display two activation bursts, a pattern consistent with stabilization and rotation of the pectoral and pelvic girdles. In support of previous assertions, comparison of Salamandra muscle activity timings to other walking tetrapods revealed broad-scale similarities, potentially indicating conservation of some aspects of neuromuscular function across tetrapods. Our data provide the foundation for building and testing dynamic simulations of fire salamander locomotor biomechanics to better understand musculoskeletal function. They could also be applied to future musculoskeletal simulations of extinct species to explore the evolution of tetrapod locomotion across deep-time.


Sign in / Sign up

Export Citation Format

Share Document