Nutrient addition does not increase the benefits of clonal integration in an invasive plant spreading from open patches into plant communities

Plant Biology ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 1090-1096
Author(s):  
X.‐X. Li ◽  
Z.‐W. Fan ◽  
Y.‐D. Shen ◽  
Y. Wang ◽  
Y. Liu ◽  
...  
2018 ◽  
Vol 643 ◽  
pp. 1232-1238 ◽  
Author(s):  
Qiaoqiao Huang ◽  
Xiaoxia Li ◽  
Fangfang Huang ◽  
Ruilong Wang ◽  
Baoqian Lu ◽  
...  

2021 ◽  
Vol 48 (2) ◽  
pp. 215-228
Author(s):  
Lubov Gubar ◽  
Serhii Koniakin

Abstract In connection with the increasing negative impact of invasive alien species on biodiversity and the environment in general, their research, as well as throughout the world, is relevant. The distribution of the Heracleum sosnowskyi and H. mantegazzianum of the secondary range on the example of the Kyiv agglomeration is investigated in the work. In our study we aimed to evaluate the possibility of spontaneous spread of giant hogweeds in the secondary range, adaptation of the species to the new conditions of the environment that favor to control of these species’ expansion and reduce the threat to the urban ecosystems and citizens’ health. We hypothesise that in the secondary range H. sosnowskyi and H. mantegazzianum settle sites with relatively high temperature (Tr), lightening (Lc), and soil moisture conditions similar to that in their natural range. 17 populations and four localities (sites) of H. sosnowskyi and H. mantegazzianum were studied. They were found within forest, meadow, riverine and ruderal plant communities. It is indicated that the advent species fully adapted to the conditions of the environment. The difference by ecological indicators Lc2 and Tm1 is pointed out. According to the results of our research, for the area of Kyiv urban agglomeration the growth of H. sosnowskyi and H. mantegazzianum is indicated in the plants communities of six classes. They spread most in ruderal plant communities of the: Robinietea, Artemisietea, Epilobietea classes. The studied species belong to invasive plant species in Ukraine and are characterized by extremely high effect on the environment and high invasive potential.


Diversity ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 40 ◽  
Author(s):  
Nathan E. Harms

The ability to invade communities in a variety of habitats (e.g., along a depth gradient) may facilitate establishment and spread of invasive plants, but how multiple lineages of a species perform under varying conditions is understudied. A series of greenhouse common garden experiments were conducted in which six diploid and four triploid populations of the aquatic invasive plant Butomus umbellatus L. (Butomaceae) were grown in submersed or emergent conditions, in monoculture or in a multispecies community, to compare establishment and productivity of cytotypes under competition. Diploid biomass overall was 12 times higher than triploids in the submersed experiment and three times higher in the emergent experiment. Diploid shoot:root ratio was double that of triploid plants in submersed conditions overall, and double in emergent conditions in monoculture. Relative interaction intensities (RII) indicated that triploid plants were sixteen times more negatively impacted by competition under submersed conditions but diploid plants were twice as impacted under emergent conditions. Recipient communities were similarly negatively impacted by B. umbellatus cytotypes. This study supports the idea that diploid and triploid B. umbellatus plants are equally capable of invading emergent communities, but that diploid plants may be better adapted for invading in submersed habitats. However, consistently lower shoot:root ratios in both monoculture and in communities suggests that triploid plants may be better-adapted competitors in the long term due to increased resource allocation to roots. This represents the first examination into the role of cytotype and habitat on competitive interactions of B. umbellatus.


Author(s):  
Анатолий Савва ◽  
Anatoly Savva ◽  
Леонид Есипенко ◽  
Leonid Esipenko ◽  
Сергей Падалка ◽  
...  

The invasion of A. artemisiifolia L into the agricultural landscape of Russia led to the phytosanitary destabilization. The dominance of ambrosia in biogeocenoses led to changes in species composition in plant communities, disruption of the structure of trophic bonds, hydrological and energy balance. All these factors of influence of quarantine weed plant led to reduction of productivity of crops. The study of patterns of competitive relationships of invasive plant in anthropogenic ecosystems were held in various man-made ecosystems of Krasnodar territory. Original data on ecological relations between the invider and native flora were obtained


Flora ◽  
2014 ◽  
Vol 209 (11) ◽  
pp. 666-673 ◽  
Author(s):  
Wenhua You ◽  
Dan Yu ◽  
Dong Xie ◽  
Cuimin Han ◽  
Chunhua Liu

2009 ◽  
Vol 12 (5) ◽  
pp. 1243-1252 ◽  
Author(s):  
Anna G. Aguilera ◽  
Peter Alpert ◽  
Jeffrey S. Dukes ◽  
Robin Harrington

2010 ◽  
Vol 3 (2) ◽  
pp. 182-189
Author(s):  
Monica L. Pokorny ◽  
Jane M. Mangold ◽  
James Hafer ◽  
M. Kirk Denny

AbstractInvasive plants need to be managed after wildfire to suppress the invasive plant and to maintain or restore a desired plant community. Our study tested treatments that influence species availability and performance following a disturbance (wildfire). The overall objective was to determine the ability of herbicide and revegetation treatments to restore spotted knapweed–infested areas to desired plant communities after wildfire. The study consisted of a factorial combination of three herbicide application treatments (broadcast application, spot application, and no herbicide) and three seed mixture treatments (grass-only seed mix, a grass and forb seed mix, no seeding). Picloram was used for the herbicide. Both the broadcast and spot picloram application methods decreased spotted knapweed cover and density up to 80% while increasing desired grass cover and density up to 20% compared with the control. However, broadcast spraying picloram decreased species richness from 5.7 to 3.6 species 0.1 m−2 and decreased desired forb density and cover compared with spot-applied picloram treatment. Spot spraying resulted in an increase in other undesired forbs compared with broadcast spraying. Seeding with desired species had no effect on spotted knapweed cover or density. Spot spraying may help maintain desired species richness while managing spotted knapweed.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 587
Author(s):  
Ahmed M. Abd-ElGawad ◽  
Abdulaziz M. Assaeed ◽  
Saud L. Al-Rowaily ◽  
Basharat M. Dar ◽  
Jahangir A. Malik

Wetlands are represented in Saudi Arabia in the form of mangrove, sabkha, and wadi (valleys) systems, and these habitats are considered as a sanctuary for biodiversity. The present study aimed to identify different vegetation groups in a wetland site in Wadi Hargan near Alqurainah, Riyadh, Saudi Arabia, and to relate different plant communities and plant diversity to soil moisture, salinity, and other soil properties. Floristic analysis and vegetation structure were investigated within 15 stands along the wadi and were subjected to correlation analysis with soil factors via multivariate analysis. The floristic survey revealed the presence of 111 plant species belonging to 39 families. The most represented families were Asteraceae, Poaceae, Brassicaceae, Caryophyllaceae, and Papilionaceae, which accounted for the largest proportion (55.4%) of the total species. The therophytes were the dominant life form, where they were represented by 46.9% of the total number of species. The application of cluster analysis (TWINSPAN) to the importance value of each species based on the relative cover and density led to the recognition of four plant communities: (A) Phragmites australis—Tamarix nilotica community, (B) Zygophyllum coccineum—Acacia gerrardii community, (C) Lycium shawii—Zygophyllum coccineum community, and (D) Rhazya stricta community. The soil analysis and correlation test revealed significant variations in the content of salinity, moisture, CO3, Cl, SO4, Ca, Mg, and Na among the plant communities. It can be concluded that soil moisture and salinity factors were the fundamental driving forces for plant community structure in the studied wadi. The wadi was moderately grazed, mainly by camels; thereby, the invasive plant Rhazya stricta dominated the central region of the wadi. Also, human interference was observed at the end of the wadi, where some weeds sprouted such as Malva parviflora. The presence of those two rare wetland species, Adiantum capillus-veneris and Ficus salicifolia, in the study area, showed the unique properties of the studied wadi and necessitate an urgent biodiversity conservation action to protect its natural vegetation from overgrazing and human interference.


Oecologia ◽  
2021 ◽  
Author(s):  
Chhaya M. Werner ◽  
Maria Tuomi ◽  
Anu Eskelinen

AbstractPlant communities worldwide show varied responses to nutrient enrichment—including shifts in species identity, decreased diversity, and changes in functional trait composition—but the factors determining community recovery after the cessation of nutrient addition remain uncertain. We manipulated nutrient levels in a tundra community for 6 years of nutrient addition followed by 8 years of recovery. We examined how community recovery was mediated by traits related to plant resource-use strategy and plant ability to modify their environment. Overall, we observed persistent effects of fertilization on plant communities. We found that plants with fast-growing traits, including higher specific leaf area, taller stature and lower foliar C:N, were more likely to show a persistent increase in fertilized plots than control plots, maintaining significantly higher cover in fertilized plots 8 years after cessation of fertilization. Additionally, although graminoids responded most strongly to the initial fertilization treatment, forb species were more vulnerable to fertilization effects in the long-term, showing persistent decline and no recovery in 8 years. Finally, these persistent fertilization effects were accompanied by modified environmental conditions, including persistent increases in litter depth and soil phosphorous and lower soil C:N. Our results demonstrate the potential for lasting effects of nutrient enrichment in nutrient-limited systems and identify species traits related to rapid growth and nutrient-use efficiency as the main predictors of the persistence of nutrient enrichment effects. These findings highlight the usefulness of trait-based approach for understanding the persistent feedbacks of nutrient enrichment, plant dynamics, and niche construction via litter and nutrient build-up.


Sign in / Sign up

Export Citation Format

Share Document