Are low-productive plant communities responsive to nutrient addition? Evidence from sand pioneer grassland

2008 ◽  
Vol 19 (3) ◽  
pp. 343-354 ◽  
Author(s):  
Christian Storm ◽  
Karin Suss
Plant Biology ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 1090-1096
Author(s):  
X.‐X. Li ◽  
Z.‐W. Fan ◽  
Y.‐D. Shen ◽  
Y. Wang ◽  
Y. Liu ◽  
...  

Oecologia ◽  
2021 ◽  
Author(s):  
Chhaya M. Werner ◽  
Maria Tuomi ◽  
Anu Eskelinen

AbstractPlant communities worldwide show varied responses to nutrient enrichment—including shifts in species identity, decreased diversity, and changes in functional trait composition—but the factors determining community recovery after the cessation of nutrient addition remain uncertain. We manipulated nutrient levels in a tundra community for 6 years of nutrient addition followed by 8 years of recovery. We examined how community recovery was mediated by traits related to plant resource-use strategy and plant ability to modify their environment. Overall, we observed persistent effects of fertilization on plant communities. We found that plants with fast-growing traits, including higher specific leaf area, taller stature and lower foliar C:N, were more likely to show a persistent increase in fertilized plots than control plots, maintaining significantly higher cover in fertilized plots 8 years after cessation of fertilization. Additionally, although graminoids responded most strongly to the initial fertilization treatment, forb species were more vulnerable to fertilization effects in the long-term, showing persistent decline and no recovery in 8 years. Finally, these persistent fertilization effects were accompanied by modified environmental conditions, including persistent increases in litter depth and soil phosphorous and lower soil C:N. Our results demonstrate the potential for lasting effects of nutrient enrichment in nutrient-limited systems and identify species traits related to rapid growth and nutrient-use efficiency as the main predictors of the persistence of nutrient enrichment effects. These findings highlight the usefulness of trait-based approach for understanding the persistent feedbacks of nutrient enrichment, plant dynamics, and niche construction via litter and nutrient build-up.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ylva Lekberg ◽  
Carlos A. Arnillas ◽  
Elizabeth T. Borer ◽  
Lorinda S. Bullington ◽  
Noah Fierer ◽  
...  

AbstractEcosystems across the globe receive elevated inputs of nutrients, but the consequences of this for soil fungal guilds that mediate key ecosystem functions remain unclear. We find that nitrogen and phosphorus addition to 25 grasslands distributed across four continents promotes the relative abundance of fungal pathogens, suppresses mutualists, but does not affect saprotrophs. Structural equation models suggest that responses are often indirect and primarily mediated by nutrient-induced shifts in plant communities. Nutrient addition also reduces co-occurrences within and among fungal guilds, which could have important consequences for belowground interactions. Focusing only on plots that received no nutrient addition, soil properties influence pathogen abundance globally, whereas plant community characteristics influence mutualists, and climate influence saprotrophs. We show consistent, guild-level responses that enhance our ability to predict shifts in soil function related to anthropogenic eutrophication, which can have longer-term consequences for plant communities.


1986 ◽  
Vol 64 (11) ◽  
pp. 2502-2507 ◽  
Author(s):  
G. H. R. Henry ◽  
B. Freedman ◽  
J. Svoboda

Three plant communities studied at a high arctic oasis on Ellesmere Island responded to nutrient addition. Response to nitrogen was greatest in the driest community and weaker in the more mesic and wet-mesic communities. Nutrient addition resulted in (i) increased inflorescence densities of dicotyledonous and certain graminoid species; (ii) increased tiller densities of wet sedge species; and (iii) increased net production of graminoids and forbs at high rates of application, and in some dwarf shrubs at lower rates. These results parallel those of studies at lower latitudes in the Arctic, and support the hypothesis that arctic ecosystems are typically oligotrophic.


Sign in / Sign up

Export Citation Format

Share Document