A catalogue of semigroup properties for integral operators with Fox–Wright kernel functions

Author(s):  
Arran Fernandez ◽  
Mehmet Ali Özarslan ◽  
Cemaliye Kürt
2003 ◽  
Vol 170 ◽  
pp. 117-133 ◽  
Author(s):  
Yong Ding ◽  
Shanzhen Lu

AbstractIn this paper the authors prove that a class of multilinear operators formed by the singular integral or fractional integral operators with homogeneous kernels are bounded operators from the product spaces Lp1 × Lp2 × · · · × LpK (ℝn) to the Hardy spaces Hq (ℝn) and the weak Hardy space Hq,∞(ℝn), where the kernel functions Ωij satisfy only the Ls-Dini conditions. As an application of this result, we obtain the (Lp, Lq) boundedness for a class of commutator of the fractional integral with homogeneous kernels and BMO function.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Gümrah Uysal

<p style='text-indent:20px;'>In the present paper, we consider a general class of operators enriched with some properties in order to act on <inline-formula><tex-math id="M1">\begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document}</tex-math></inline-formula>. We establish uniform convergence of the operators for every function in <inline-formula><tex-math id="M2">\begin{document}$ C^{\ast }( \mathbb{R} _{0}^{+}) $\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R} _{0}^{+} $\end{document}</tex-math></inline-formula>. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.</p>


2020 ◽  
pp. 9-13
Author(s):  
A. V. Lapko ◽  
V. A. Lapko

An original technique has been justified for the fast bandwidths selection of kernel functions in a nonparametric estimate of the multidimensional probability density of the Rosenblatt–Parzen type. The proposed method makes it possible to significantly increase the computational efficiency of the optimization procedure for kernel probability density estimates in the conditions of large-volume statistical data in comparison with traditional approaches. The basis of the proposed approach is the analysis of the optimal parameter formula for the bandwidths of a multidimensional kernel probability density estimate. Dependencies between the nonlinear functional on the probability density and its derivatives up to the second order inclusive of the antikurtosis coefficients of random variables are found. The bandwidths for each random variable are represented as the product of an undefined parameter and their mean square deviation. The influence of the error in restoring the established functional dependencies on the approximation properties of the kernel probability density estimation is determined. The obtained results are implemented as a method of synthesis and analysis of a fast bandwidths selection of the kernel estimation of the two-dimensional probability density of independent random variables. This method uses data on the quantitative characteristics of a family of lognormal distribution laws.


2018 ◽  
Vol 60 (3) ◽  
pp. 610-629
Author(s):  
G. A. Karapetyan ◽  
H. A. Petrosyan
Keyword(s):  

Author(s):  
Brian Street

This chapter turns to a general theory which generalizes and unifies all of the examples in the preceding chapters. A main issue is that the first definition from the trichotomy does not generalize to the multi-parameter situation. To deal with this, strengthened cancellation conditions are introduced. This is done in two different ways, resulting in four total definitions for singular integral operators (the first two use the strengthened cancellation conditions, while the later two are generalizations of the later two parts of the trichotomy). Thus, we obtain four classes of singular integral operators, denoted by A1, A2, A3, and A4. The main theorem of the chapter is A1 = A2 = A3 = A4; i.e., all four of these definitions are equivalent. This leads to many nice properties of these singular integral operators.


Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.


Sign in / Sign up

Export Citation Format

Share Document