Tectonothermal history of the Holy Cross Mountains (Poland) in the light of low-temperature thermochronology

Terra Nova ◽  
2018 ◽  
Vol 30 (4) ◽  
pp. 270-278 ◽  
Author(s):  
Dariusz Botor ◽  
Aneta A. Anczkiewicz ◽  
István Dunkl ◽  
Jan Golonka ◽  
Mariusz Paszkowski ◽  
...  
2019 ◽  
Vol 84 (3) ◽  
pp. 400-419 ◽  
Author(s):  
Molly Carney ◽  
Jade d'Alpoim Guedes ◽  
Kevin J. Lyons ◽  
Melissa Goodman Elgar

This project considered the deposition history of a burned structure located on the Kalispel Tribe of Indians ancestral lands at the Flying Goose site in northeastern Washington. Excavation of the structure revealed stratified deposits that do not conform to established Columbia Plateau architectural types. The small size, location, and absence of artifacts lead us to hypothesize that this site was once a non-domestic structure. We tested this hypothesis with paleoethnobotanical, bulk geoarchaeological, thin section, and experimental firing data to deduce the structural remains and the post-occupation sequence. The structure burned at a relatively low temperature, was buried soon afterward with imported rubified sediment, and was exposed to seasonal river inundation. Subsequently, a second fire consumed a unique assemblage of plant remains. Drawing on recent approaches to structured deposition and historic processes, we incorporate ethnography to argue that this structure was a menstrual lodge. These structures are common in ethnographic descriptions, although no menstrual lodges have been positively identified in the archaeological record of the North American Pacific Northwest. This interpretation is important to understanding the development and time depth of gendered practices of Interior Northwest groups.


2021 ◽  
Author(s):  
Giovanni Baccolo ◽  
Barbara Delmonte ◽  
Paul Niles ◽  
Giannantonio Cibin ◽  
Elena Di Stefano ◽  
...  

<p>On Earth, jarosite is a weathering product forming in acidic-oxidative environments from the alteration of iron-bearing minerals in presence of liquid water. Typical settings where this iron-potassium hydrated sulphate is found, are weathering zones of pyrite-rich deposits, evaporative basins and fumaroles. Jarosite is not only known on Earth, it also occurs on Mars, where it was firstly identified by the Opportunity rover. The mineral was in fact recognized in the finely layered formations outcropping at Meridiani Planum and that were accurately investigated by the rover (Klingelhöfer et al. 2004). Since jarosite requires liquid water to form, its occurrence on Mars has been regarded as an evidence for the presence of liquid water in the geologic past of Mars (Elwood-Madden et al., 2004). Since then, many models have been proposed to describe the environments where the precipitation of Martian jarosite took place. The most accepted ones deal with evaporative basins similar to Earth’s playas, others concern volcanic activity and hydrothermal processes. An alternative proposal predicted that jarosite may have formed as a consequence of weathering of mineral dust trapped in massive ice deposits, i.e. the ice-weathering model (Niles & Michalsky, 2009). The hypothesis that jarosite formed on Mars because of low-temperature, acidic and water limited weathering, is not new (Burns, 1987), but until now no direct evidences were available to support it.</p><p>A potential Earth analogue to investigate such processes is deep Antarctic ice. We present a first investigation of deep ice samples from the Talos Dome ice core (East Antarctica) aimed at the identification of englacial jarosite, so as to support the ice-weathering model. Evidences gathered through independent techniques showed that jarosite is actually present in deep Antarctic ice and results from the weathering of dust trapped into ice. The process is controlled by the re-crystallization of ice grains and the concurrent re-location of impurities at grain-junctions, which both depend on ice depth. This study demonstrates that the deep englacial environment is suitable for jarosite precipitation. Our findings support the hypothesis that, as originally predicted by the ice-weathering model, paleo ice-related processes have been important in the geologic and geochemical history of Mars.</p><p> </p><p><strong>References</strong></p><p>Burns, R. Ferric sulfates on Mars. <em>J. Geophys. Res.</em> <strong>92</strong>, E570-E574 (1987).</p><p>Elwood-Madden et al., 2004. Jarosite as an indicator of water-limited chemical weathering on Mars. <em>Nature</em> <strong>431</strong>, 821-823 (2004).</p><p>Klingelhöfer, G. et al. Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer. <em>Science</em> <strong>306</strong>, 1740-1745 (2004).</p><p>Niles, P. B. & Michalski, J. M. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. <em>Nat. Geosci.</em> <strong>2</strong>, 215-220 (2009).</p>


Tectonics ◽  
2018 ◽  
Vol 37 (10) ◽  
pp. 3954-3969 ◽  
Author(s):  
Gilby Jepson ◽  
Stijn Glorie ◽  
Dmitry Konopelko ◽  
Jack Gillespie ◽  
Martin Danišík ◽  
...  

2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

<p>Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 ± 5.1 Ma, 59.5 ± 5.2 and 101.6 ± 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 ± 17.5 Ma (MSWD: 7.4), 353.5 ± 13.5 Ma (MSWD: 3.1) and 261.2 ± 8.5 Ma (MSWD: 5.9). All AFT data fail the χ<sup>2</sup> test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r<sub>mro</sub> parameter uses grain specific chemistry to predict apatite’s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r<sub>mro</sub> values and each sample was separated into two kinetic populations that pass the χ<sup>2</sup> test: a less retentive population with ages ranging from 49.3 ± 9.3 Ma to 36.4 ± 4.7 Ma, and a more retentive population with ages ranging from 157.7 ± 19 Ma to 103.3 ± 11.8 Ma, with r<sub>mr0</sub> benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165°C-185°C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75°C-110°C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75°C-95°C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.</p>


2017 ◽  
Vol 44 (1) ◽  
pp. 112-120 ◽  
Author(s):  
Shuang-Li Tang ◽  
Sheng-Hua Li

Abstract Thermoluminescence (TL) and isothermal thermoluminescence (ITL) signals from K-feldspar were studied. The signals from K-feldspar have provided multiple thermometers for thermochronological study. Protocols of multiple aliquot (MA) additive-dose (A) and regenerative-dose (R) have been applied and tested for equivalent dose (De) determinations using TL and ITL signals (MAA-TL, MAR-TL, MAA-ITL and MAR-ITL). Single aliquot regenerative-dose (SAR) protocol was only applied for De determination using ITL signals (SAR-ITL). A 50–60°C translation of heating temperature was necessary for the ITL De values to agree with TL De values. Based on the experiment results and merits-drawbacks comparison of the five tested protocols, the MAR-TL and SAR-ITL are favorable because of their efficiency and accuracy in De determinations. These two protocols were further applied to the samples from the Nujiang River valley and both explicitly demonstrated the thermal history of the samples. They are suitable for K-feldspar thermochronology study. They, as a parallelism of the previous studies of quartz TL and ITL signals, can provide multiple measures for a rock sample with the same thermal history in geo-thermochronological studies.


Tectonics ◽  
2012 ◽  
Vol 31 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. Rezaeian ◽  
A. Carter ◽  
N. Hovius ◽  
M. B. Allen

Tectonics ◽  
2018 ◽  
Vol 37 (9) ◽  
pp. 3041-3068 ◽  
Author(s):  
Yann Gavillot ◽  
Andrew J. Meigs ◽  
Francis J. Sousa ◽  
Daniel Stockli ◽  
Doug Yule ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document