rock sample
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 78)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Gianfranco Ulian ◽  
Giovanni Valdrè

AbstractCalcite (CaCO3, trigonal crystal system, space group $$R\overline{3}c$$ R 3 ¯ c ) is a ubiquitous carbonate phase commonly found on the Earth’s crust that finds many useful applications in both scientific (mineralogy, petrology, geology) and technological fields (optics, sensors, materials technology) because of its peculiar anisotropic physical properties. Among them, photoelasticity, i.e., the variation of the optical properties of the mineral (including birefringence) with the applied stress, could find usefulness in determining the stress state of a rock sample containing calcite by employing simple optical measurements. However, the photoelastic tensor is not easily available from experiments, and affected by high uncertainties. Here we present a theoretical Density Functional Theory approach to obtain both elastic and photoelastic properties of calcite, considering realistic experimental conditions (298 K, 1 atm). The results were compared with those available in literature, further extending the knowledge of the photoelasticity of calcite, and clarifying an experimental discrepancy in the sign of the p41 photoelastic tensor component measured in past investigations. The methods here described and applied to a well-known crystalline material can be used to obtain the photoelastic properties of other minerals and/or materials at desired pressure and temperature conditions.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mingwei Kong ◽  
Zhaopeng Zhang ◽  
Chunyan Zhao ◽  
Huasheng Chen ◽  
Xinfang Ma ◽  
...  

The mechanical properties of the high-temperature and high-pressure reservoirs in the southern margin of Junggar Basin have not been clearly understood, which correspondingly results in uncertainties when predicting the breakdown pressure. To address this issue, firstly, rock mechanical experiments under high temperature, high confining pressure, and high pore pressure were carried out. Secondly, empirical formulas related to the transformation of dynamic and static mechanical parameters in the regional strata were proposed. Finally, the existing prediction model for the formation breakdown pressure was improved by taking the wellbore seepage and thermal stress into consideration. Results show that under the reservoir condition of high temperature and high pressure, the rock sample tends to form closed shear cracks. High temperature causes thermal damages and the reduction of the compressive strength and elastic modulus, while the combined effects of high confining pressure and pore pressure enhance the compressive strength and plasticity of the rock sample simultaneously. Based on the correlation analysis, it is found that the static elastic modulus is linearly related to the dynamic value, while static Poisson’s ratio is a quadratic function of the dynamic value. These fitting functions can be used to obtain the profiles of static elastic modulus and Poisson’s ratio based on their dynamic values from the logging interpretation. Besides, the improved prediction model for the rock breakdown pressure can yield more accurate results indicated by the error less than 2%. Therefore, the proposed breakdown pressure prediction model in this study can provide theoretical guidance in the selection of fracturing truck groups and the design of the pumping schedule for high-temperature and high-pressure reservoirs.


Georesursy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 12-20
Author(s):  
Alexander Fazliakhmetov ◽  
Olga Artyushkova ◽  
Evgeny Statsenko ◽  
Rail Kadyrov

Currently, the techniques applied for extraction and study of conodonts from siliceous rocks are associated with a number of problems. This makes it difficult to solve many problems in the areas of development of the volcanic and volcanic-sedimentary rocks, where cherts, jaspers, and phtanites are the only sedimentary formations for dating these deposits. On X-ray computed microtomography it is possible to avoid some problems to obtain not only excellent 3-D images of conodonts, but sections in any direction too, as well as in video formats. It is shown that similar results are successful under the hollows after the dissolution of the conodonts. There is no problem in application of X-ray microcomputed tomography when conodonts have been already found on the surface or inside of the sample, or if the content of conodonts in the rock is obviously high. In such a case the scanning without preliminary search is ensured. In cases when conodonts are rare and not obvious, it is proposed the following technique of their discovery. The rock sample is cut into plates. The conodonts are search for on the surface of the plates, moistened with a mixture of glycerin and water under a binocular microscope. If it is necessary (when the rock is opaque), the result is checked by a chemical reaction: 5–10 % hydrochloric acid plus 1–2 crystals of ammonium molybdate are put on the surface of the sample. The appearance of a yellow sediment means the presence of phosphorus, to indicate the probability the detected object to be a conodont. Next, the sample should be washed from acid, its size should be decreased. Then the microtomographic study should be performed.


2021 ◽  
Vol 38 (3) ◽  
pp. 272-282
Author(s):  
Juan Manuel Sánchez-Núñez ◽  
Antonio Pola ◽  
Guillermo Cisneros ◽  
Hugo Iván Sereno ◽  
María Elena Serrano-Flores ◽  
...  

Slope instability in the Butterfly Biosphere Reserve (RBMM) Michoacán, Mexico, is a widespread phenomenon that results from the complex interaction among different factors such as climate, slope, and the spatial distribution of different rock units. The climate is temperate subhumid, with rains in summer and an annual average rainfall of 700 to 1250 mm. The main physiographic units of the area are volcanic mountains, with slopes greater than 30 degrees. The main scope of this study is to characterize the physical-mechanical properties of fresh and completely altered lower Miocene andesitic lavas of the Sierra de Angangueo (Cerro El Campanario, province of El Rosario, Michoacán) by implementing laboratory tests (bulk density, permeability, porosity, uniaxial compressive strength). The fresh rock sample presents total porosity, permeability, and UCS values of 0.262 mD, 17.1 %, and 63.5 MPa, respectively. Instead, the altered rock display values of 393.71 mD, 60.9 %, and 0.26 MPa. Our results suggest that the slope and the degradation of the rock properties induced by alteration are the conditioning factors of instability in the region. Atypical rainfalls may act as triggering mechanism for slope failure.


Author(s):  
Meng Duan ◽  
Yaoling Niu ◽  
Pu Sun ◽  
Shuo Chen ◽  
Juanjuan Kong ◽  
...  

AbstractCalculating the temperatures of magmas from which granitoid rocks solidify is a key task of studying their petrogenesis, but few geothermometers are satisfactory. Zircon saturation thermometry has been the most widely used because it is conceptually simple and practically convenient, and because it is based on experimental calibrations with significant correlation of the calculated zircon saturation temperature (TZr) with zirconium (Zr) content in the granitic melt (i.e., TZr ∝ ZrMELT). However, application of this thermometry to natural rocks can be misleading, resulting in the calculated TZr having no geological significance. This thermometry requires Zr content and a compound bulk compositional parameter M of the melt as input variables. As the Zr and M information of the melt is not available, petrologists simply use bulk-rock Zr content (ZrBULK-ROCK) and M to calculate TZr. In the experimental calibration, TZr shows no correlation with M, thus the calculated TZr is only a function of ZrMELT. Because granitoid rocks represent cumulates or mixtures of melt with crystals before magma solidification and because significant amount Zr in the bulk-rock sample reside in zircon crystals of varying origin (liquidus, captured or inherited crystals) with unknown modal abundance, ZrBULK-ROCK cannot be equated with ZrMELT that is unknown. Hence, the calculated magma temperatures TZr using ZrBULK-ROCK have no significance in both theory and practice. As an alternative, we propose to use the empirical equation $$T_{SiO_{2}}$$ T S i O 2  (°C) = -14.16 × SiO2 + 1723 for granitoid studies, not to rely on exact values for individual samples but focus on the similarities and differences between samples and sample suites for comparison. This simple and robust thermometry is based on experimentally determined phase equilibria with T ∝ 1/SiO2.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Haoran Li ◽  
Ziheng Wang ◽  
Dekang Li ◽  
Yajun Zhang

In order to reveal the mechanism of thermal-induced deformation and fracture development of salt rock under high temperature, the particle flow program PFC2D was used to study the triaxial compression failure process of salt rocks under different temperatures; at the same time, a combination model of Burge and Linearpbond was proposed to simulate plastic deformation and heat conduction of salt rock. Finally, the simulation results were compared with the experimental results to verify the validity of the conclusion. The simulation results show that the elastic limit points of rock gradually descend, the dilatancy points rise gradually, and the plastic deformation characteristics of salt rock become more obvious with the increase of temperature. Due to the damage of the sample, the strong chains break and disappear, increasing the proportion of the weak chains, and the high temperature intensifies the rupture of the contact between the particles in the salt rock. As the temperature increases from 50°C to 120°C, the strong chains in the rock sample decrease significantly, and the damage gradually increases; when the temperature is 150°C, the contact force decreases sharply, and the damage of salt rock is significant. According to the particle displacement cloud diagrams, it is found that the expansion direction from the middle part of the rock sample to the left and right ends is 12.08°, 9.55°, 8.2°, 6.33°, and 0°, respectively. The displacement directions of the rock sample show obvious radial expansion tendency, and the higher the temperature, the more obvious the “drum-shaped” failure phenomenon in the middle of the rock sample. During the heating process, the thermal cracks are mainly tensile cracks, and transverse cracks are gradually formed in the middle of the model. The cementation failure points at the top and bottom of the model expand in an oblique direction and form oblique cracks of about 45°. From the three different mathematical models of macroscopic and mesoscopic views, it is concluded that the effect of temperatures on salt rock is more significant after 90°C. This research is important for exploring the macroscopic and microscopic mechanics evolution of salt rock and provides a reference for determining the long-term mechanical strength of salt rock.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2021
Author(s):  
Alexey V. Vakhin ◽  
Mohammed A. Khelkhal ◽  
Arash Tajik ◽  
Nikita E. Ignashev ◽  
Tatiana O. Krapivnitskaya ◽  
...  

The present paper reports experiments on microwave heating of a carbonate oil-containing rock sample in the presence and absence of an iron-magnetite-based nanocatalyst. It has been shown that the used catalyst improves the processes of destructive hydrogenation of resins and asphaltenes compounds in the oil. The chemical reactions analysis demonstrated a decrease in asphaltenes content and in their molecular weight, which increases the filtration capacity of the oil fluid in the reservoir rock porous medium. Moreover, the content of non-extractable organic matter in the rock sample after experiments and after oil extraction was determined. It has been found that the absence of the catalyst causes the least increase in the content of non-extractable organic matter in the rock. This fact is related to the intensive processes of resinous-asphaltene compounds destruction especially at the level of peripheral groups which are the most condensed fraction, and hence leads to a decrease in their solubility in the organic medium and eases their adsorption on the mineral skeleton surface.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 7) ◽  
Author(s):  
Chong Li ◽  
Sifeng He

Abstract To study the seepage and fracture characteristics of cemented rock strata, a series of triaxial seepage tests on cemented rock samples under different confining pressures and water pressures were carried out in this study. The triaxial strength, elastic modulus, volume strain, and the permeability of the cemented rock samples were analyzed by the seepage unit connection probability model and Kozeny-Carman model. Based on test results, the stress state of cemented rock samples was divided into four stages: nonlinear compaction stage, linear elastic stage, stress yield stage, and failure and postfailure stage. The triaxial strength of the cemented rock samples gradually increased with the increase of confining pressure but decreased with the increase of water pressure. The elastic modulus of the cemented rock sample increased with the increase of confining pressure but decreased with the increase of water pressure. Besides, the volume strain of the cemented rock sample was analyzed, and the volume strain change of the cemented rock sample was also classified into three stages: the increasing stage of crack volume strain, the stable stage of crack volume strain, and the decreasing stage of crack volume strain. Based on the results of triaxial seepage tests, the evolution of permeability was divided into the declining stage, increasing stage, and redescend stage. Through the seepage unit connection probability model and Kozeny-Carman model, the evolution of crack volume was obtained, and the evolution of crack volume with axial strain was also classified into three stages: the original pore closure stage, crack network expansion stage, and crack network closure stage. The permeability evolution and the crack volume evolution were also compared. The comparison results suggest that three stages of crack volume evolution are all ahead of three stages of permeability evolution, verifying that the crack propagation induces the formation of seepage channels in cemented rock samples. This research will provide a valuable reference for the study of instability and water inrush mechanism in cemented rock strata.


2021 ◽  
pp. 1-20
Author(s):  
A. A. Kasha ◽  
A. Sakhaee-Pour ◽  
I. A. Hussein

Summary Capillary pressure plays an essential role in controlling multiphase flow in porous media and is often difficult to be estimated at subsurface conditions. The Leverett capillary pressure function J provides a convenient tool to address this shortcoming; however, its performance remains poor where there is a large scatter in the scaled data. Our aim, therefore, was to reduce the gaps between J curves and to develop a method that allows accurate scaling of capillary pressure. We developed two mathematical expressions based on permeability and porosity values of 214 rock samples taken from North America and the Middle East. Using the values as grouping features, we used pattern-recognition algorithms in machine learning to cluster the original data into different groups. In each wetting phase saturation, we were able to quantify the gaps between the J curves by determining the ratio of the maximum J to the minimum J. Graphical maps were developed to identify the corresponding group for a new rock sample after which the capillary pressure is estimated using the average J curve of the identified group and the permeability and porosity values of the rock sample. This method also provides better performance than the flow zone indicator (FZI) approach. The proposed technique was validated on six rock types and has successfully generated average capillary pressure curves that capture the trends and values of the experimentally measured data by mercury injection. Moreover, the proposed methodology in this study provides an advanced and a machine-learning-oriented approach for rock typing. In this paper, we provide a reliable and easy-to-use method for capillary pressure estimation in the absence of experimentally measured data by mercury injection.


Sign in / Sign up

Export Citation Format

Share Document