scholarly journals RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes

2012 ◽  
Vol 73 (2) ◽  
pp. 179-189 ◽  
Author(s):  
Qi Zheng ◽  
M. Jordan Rowley ◽  
Gudrun Böhmdorfer ◽  
Davinder Sandhu ◽  
Brian D. Gregory ◽  
...  
Open Biology ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 170073 ◽  
Author(s):  
Joana Guiro ◽  
Shona Murphy

In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.


2019 ◽  
Author(s):  
Melanie J. Fox ◽  
Jose F. Victorino ◽  
Whitney R. Smith-Kinnaman ◽  
Sarah A. Peck Justice ◽  
Hongyu Gao ◽  
...  

ABSTRACTRNA Polymerase II (RNAPII) transcription termination is regulated by the phosphorylation status of the C-terminal domain (CTD). Using disruption-compensation (DisCo) protein-protein interaction network analysis, interaction changes were observed within the termination machinery as a consequence of deletion of the serine 5 RNAPII CTD phosphatase Rtr1. Interactions between RNAPII and the cleavage factor IA (CF1A) subunit Pcf11 were reduced in rtr1Δ, whereas interactions with the CTD and RNA-binding termination factor Nrd1 were increased. These changes could be the result of altered interactions between the termination machinery and/or increased levels of premature termination of RNAPII. Transcriptome analysis in rtr1Δ cells found decreased pervasive transcription and a shift in balance of expression of sense and antisense transcripts. Globally, rtr1Δ leads to decreases in noncoding RNAs that are linked to the Nrd1, Nab3 and Sen1 (NNS)-dependent RNAPII termination pathway. Genome-wide analysis of RNAPII and Nrd1 occupancy suggests that loss of RTR1 leads to increased termination at noncoding genes and increased efficiency of snRNA termination. Additionally, premature termination increases globally at protein-coding genes where NNS is recruited during early elongation. The effects of rtr1Δ on RNA expression levels were erased following deletion of the exosome subunit Rrp6, which works with the NNS complex to rapidly degrade terminated noncoding RNAs. Overall, these data suggest that Rtr1 restricts the NNS-dependent termination pathway in WT cells to prevent premature RNAPII termination of mRNAs and ncRNAs. Additionally, Rtr1 phosphatase activity facilitates low-level elongation of noncoding transcripts that impact the transcriptome through RNAPII interference.AUTHOR SUMMARYMany cellular RNAs including those that encode for proteins are produced by the enzyme RNA Polymerase II. In this work, we have defined a new role for the phosphatase Rtr1 in the regulation of RNA Polymerase II progression from the start of transcription to the 3’ end of the gene where the nascent RNA from protein-coding genes is typically cleaved and polyadenylated. Deletion of the gene that encodes RTR1 leads to changes in the interactions between RNA polymerase II and the termination machinery. Rtr1 loss also causes early termination of RNA Polymerase II at many of its target gene types including protein coding genes and noncoding RNAs. Evidence suggests that the premature termination observed in RTR1 knockout cells occurs through the termination factor and RNA binding protein Nrd1 and its binding partner Nab3. Additionally, many of the prematurely terminated noncoding RNA transcripts are degraded by the Rrp6-containing nuclear exosome, a known component of the Nrd1-Nab3 termination coupled RNA degradation pathway. These findings suggest that Rtr1 normally promotes elongation of RNA Polymerase II transcripts through preventation of Nrd1-directed termination.


1992 ◽  
Vol 12 (6) ◽  
pp. 2644-2652 ◽  
Author(s):  
S D Brown ◽  
J Huang ◽  
L H Van der Ploeg

All eukaryotic protein-coding genes are believed to be transcribed by RNA polymerase (Pol) II. An exception may exist in the protozoan parasite Trypanosoma brucei, in which the genes encoding the variant surface glycoprotein (VSG) and procyclic acidic repetitive protein (PARP) are transcribed by an RNA polymerase that is resistant to the Pol II inhibitor alpha-amanitin. The PARP and VSG genes were proposed to be transcribed by Pol I (C. Shea, M. G.-S. Lee, and L. H. T. Van der Ploeg, Cell 50:603-612, 1987; G. Rudenko, M. G.-S. Lee, and L. H. T. Van der Ploeg, Nucleic Acids Res. 20:303-306, 1992), a suggestion that has been substantiated by the finding that trypanosomes can transcribe protein-coding genes by Pol I (G. Rudenko, H.-M. Chung, V. P. Pham, and L. H. T. Van der Ploeg, EMBO J. 10:3387-3397, 1991). We analyzed the sequence elements of the PARP promoter by linker scanning mutagenesis and compared the PARP promoter with Pol I, Pol II, and Pol III promoters. The PARP promoter appeared to be of limited complexity and contained at least two critical regions. The first was located adjacent to the transcription initiation site (nucleotides [nt] -69 to +12) and contained three discrete domains in which linker scanning mutants affected the transcriptional efficiency: at nt -69 to -56, -37 to -11, and -11 to +12. The second region was located between nt -140 and -131, and a third region may be located between nt -228 and -205. The nucleotide sequences of these elements, and their relative positioning with respect to the transcription initiation site did not resemble those of either Pol II or Pol III promoter elements, but rather reflected the organization of Pol I promoters in (i) similarity in the positioning of essential domains in the PARP promoter and Pol I promoter, (ii) strong sequence homology between the PARP core promoter element (nt -37 to -11) and identically positioned nucleotide sequences in the trypanosome rRNA and VSG gene promoters, and (iii) moderate effects on promoter activity of mutations around the transcription initiation site.


1991 ◽  
Vol 10 (11) ◽  
pp. 3387-3397 ◽  
Author(s):  
G. Rudenko ◽  
H.M. Chung ◽  
V.P. Pham ◽  
L.H. Van der Ploeg

1992 ◽  
Vol 12 (6) ◽  
pp. 2644-2652
Author(s):  
S D Brown ◽  
J Huang ◽  
L H Van der Ploeg

All eukaryotic protein-coding genes are believed to be transcribed by RNA polymerase (Pol) II. An exception may exist in the protozoan parasite Trypanosoma brucei, in which the genes encoding the variant surface glycoprotein (VSG) and procyclic acidic repetitive protein (PARP) are transcribed by an RNA polymerase that is resistant to the Pol II inhibitor alpha-amanitin. The PARP and VSG genes were proposed to be transcribed by Pol I (C. Shea, M. G.-S. Lee, and L. H. T. Van der Ploeg, Cell 50:603-612, 1987; G. Rudenko, M. G.-S. Lee, and L. H. T. Van der Ploeg, Nucleic Acids Res. 20:303-306, 1992), a suggestion that has been substantiated by the finding that trypanosomes can transcribe protein-coding genes by Pol I (G. Rudenko, H.-M. Chung, V. P. Pham, and L. H. T. Van der Ploeg, EMBO J. 10:3387-3397, 1991). We analyzed the sequence elements of the PARP promoter by linker scanning mutagenesis and compared the PARP promoter with Pol I, Pol II, and Pol III promoters. The PARP promoter appeared to be of limited complexity and contained at least two critical regions. The first was located adjacent to the transcription initiation site (nucleotides [nt] -69 to +12) and contained three discrete domains in which linker scanning mutants affected the transcriptional efficiency: at nt -69 to -56, -37 to -11, and -11 to +12. The second region was located between nt -140 and -131, and a third region may be located between nt -228 and -205. The nucleotide sequences of these elements, and their relative positioning with respect to the transcription initiation site did not resemble those of either Pol II or Pol III promoter elements, but rather reflected the organization of Pol I promoters in (i) similarity in the positioning of essential domains in the PARP promoter and Pol I promoter, (ii) strong sequence homology between the PARP core promoter element (nt -37 to -11) and identically positioned nucleotide sequences in the trypanosome rRNA and VSG gene promoters, and (iii) moderate effects on promoter activity of mutations around the transcription initiation site.


2021 ◽  
Author(s):  
Diane Burgess ◽  
Hiu Tung Chow ◽  
Jeffrey W Grover ◽  
Michael Freeling ◽  
Rebecca A Mosher

24-nt small interfering siRNAs maintain asymmetric DNA methylation at thousands of euchromatic transposable elements in plant genomes in a process call RNA-directed DNA Methylation (RdDM). Although this methylation occasionally causes transcriptional silencing of nearby protein-coding genes, direct targeting of methylation at coding sequences is rare. RdDM is dispensable for growth and development in Arabidopsis, but is required for reproduction in other plant species, such as Brassica rapa. 24-nt siRNAs are particularly abundant in reproductive tissue, due largely to overwhelming expression from a small number of loci in the ovule and developing seed coat, termed siren loci. Here we show that siRNAs are often produced from gene fragments embedded in siren loci, and that these siRNAs can trigger methylation in trans at related protein-coding genes. This trans-methylation is associated with transcriptional silencing of target genes and may be responsible for seed abortion in RdDM mutants. Furthermore, we demonstrate that a consensus sequence in at least two families of DNA transposons is associated with abundant siren expression, most likely through recruitment of the CLSY3 putative chromatin remodeller. This research describes a new mechanism whereby RdDM influences gene expression and sheds light on the role of RdDM during plant reproduction.


Sign in / Sign up

Export Citation Format

Share Document