scholarly journals Regulation of expression of human RNA polymerase II-transcribed snRNA genes

Open Biology ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 170073 ◽  
Author(s):  
Joana Guiro ◽  
Shona Murphy

In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.

2019 ◽  
Vol 47 (17) ◽  
pp. 9024-9036 ◽  
Author(s):  
Jered M Wendte ◽  
Jeremy R Haag ◽  
Olga M Pontes ◽  
Jasleen Singh ◽  
Sara Metcalf ◽  
...  

Abstract In plants, nuclear multisubunit RNA polymerases IV and V are RNA Polymerase II-related enzymes that synthesize non-coding RNAs for RNA-directed DNA methylation (RdDM) and transcriptional gene silencing. Here, we tested the importance of the C-terminal domain (CTD) of Pol IV’s largest subunit given that the Pol II CTD mediates multiple aspects of Pol II transcription. We show that the CTD is dispensable for Pol IV catalytic activity and Pol IV termination-dependent activation of RNA-DEPENDENT RNA POLYMERASE 2, which partners with Pol IV to generate dsRNA precursors of the 24 nt siRNAs that guide RdDM. However, 24 nt siRNA levels decrease ∼80% when the CTD is deleted. RNA-dependent cytosine methylation is also reduced, but only ∼20%, suggesting that siRNA levels typically exceed the levels needed for methylation of most loci. Pol IV-dependent loci affected by loss of the CTD are primarily located in chromosome arms, similar to loci dependent CLSY1/2 or SHH1, which are proteins implicated in Pol IV recruitment. However, deletion of the CTD does not phenocopy clsy or shh1 mutants, consistent with the CTD affecting post-recruitment aspects of Pol IV activity at target loci.


2006 ◽  
Vol 26 (7) ◽  
pp. 2688-2696 ◽  
Author(s):  
Eric J. Steinmetz ◽  
Sarah B. H. Ng ◽  
Joseph P. Cloute ◽  
David A. Brow

ABSTRACT Most eukaryotic genes are transcribed by RNA polymerase II (Pol II), including those that produce mRNAs and many noncoding functional RNAs. Proper expression of these genes requires efficient termination by Pol II to avoid transcriptional interference and synthesis of extended, nonfunctional RNAs. We previously described a pathway for yeast Pol II termination that involves recognition of an element in the nascent transcript by the essential RNA-binding protein Nrd1. The Nrd1-dependent pathway appears to be used primarily for nonpolyadenylated transcripts, such as the small nuclear and small nucleolar RNAs (snoRNAs). mRNAs are thought to use a distinct pathway that is coupled to cleavage and polyadenylation of the transcript. Here we show that the terminator elements for two yeast snoRNA genes also direct polyadenylated 3′-end formation in the context of an mRNA 3′ untranslated region. A selection for cis-acting terminator readthrough mutations identified conserved features of these elements, some of which are similar to cleavage and polyadenylation signals. A selection for trans-acting mutations that induce readthrough of both a snoRNA and an mRNA terminator yielded mutations in the Rpb3 and Rpb11 subunits of Pol II that define a remarkably discrete surface on the trailing end of the enzyme. Our results suggest that, at least in budding yeast, protein-coding and noncoding Pol II-transcribed genes use similar mechanisms to direct termination and that the termination signal is transduced through the Rpb3/Rpb11 heterodimer.


2004 ◽  
Vol 24 (20) ◽  
pp. 8963-8969 ◽  
Author(s):  
Gregory Bird ◽  
Diego A. R. Zorio ◽  
David L. Bentley

ABSTRACT We investigated the role of RNA polymerase II (pol II) carboxy-terminal domain (CTD) phosphorylation in pre-mRNA processing coupled and uncoupled from transcription in Xenopus oocytes. Inhibition of CTD phosphorylation by the kinase inhibitors 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole and H8 blocked transcription-coupled splicing and poly(A) site cleavage. These experiments suggest that pol II CTD phosphorylation is required for efficient pre-mRNA splicing and 3′-end formation in vivo. In contrast, processing of injected pre-mRNA was unaffected by either kinase inhibitors or α-amanitin-induced depletion of pol II. pol II therefore does not appear to participate directly in posttranscriptional processing, at least in frog oocytes. Together these experiments show that the influence of the phosphorylated CTD on pre-mRNA splicing and 3′-end processing is mediated by transcriptional coupling.


2021 ◽  
Author(s):  
Michael Tellier ◽  
Justyna Zaborowska ◽  
Jonathan Neve ◽  
Takayuki Nojima ◽  
Svenja Hester ◽  
...  

CDK9 is a critical kinase required for the productive transcription of protein-coding genes by RNA polymerase II (pol II) in higher eukaryotes. Phosphorylation of targets including the elongation factor SPT5 and the carboxyl-terminal domain (CTD) of RNA pol II allows the polymerase to pass an early elongation checkpoint (EEC), which is encountered soon after initiation. In addition to halting RNA polymerase II at the EEC, CDK9 inhibition also causes premature termination of transcription across the last exon, loss of polyadenylation factors from chromatin, and loss of polyadenylation of nascent transcripts. Inhibition of the phosphatase PP2A abrogates the premature termination and loss of polyadenylation caused by CDK9 inhibition, suggesting that CDK9 and PP2A, working together, regulate the coupling of elongation and transcription termination to RNA maturation. Our phosphoproteomic analyses, using either DRB or an ATP analog-sensitive CDK9 cell line confirm the splicing factor SF3B1 as an additional key target of this kinase. CDK9 inhibition causes loss of interaction of splicing and export factors with SF3B1, suggesting that CDK9 also helps to co-ordinates coupling of splicing and export to transcription.


2017 ◽  
Vol 114 (20) ◽  
pp. E3944-E3953 ◽  
Author(s):  
Corey M. Nemec ◽  
Fan Yang ◽  
Joshua M. Gilmore ◽  
Corinna Hintermair ◽  
Yi-Hsuan Ho ◽  
...  

The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of Y1S2P3T4S5P6S7 heptapeptide repeats of the CTD engage specific “readers.” Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes. Here, we identify a role for phospho-Thr4 in transcription termination at noncoding small nucleolar RNA (snoRNA) genes. Quantitative proteomics reveals an interactome of known readers as well as protein complexes that were not known to rely on Thr4 for association with Pol II. The data indicate a key role for Thr4 in engaging the machinery used for transcription elongation and termination. We focus on Rtt103, a protein that binds phospho-Ser2 and phospho-Thr4 marks and facilitates transcription termination at protein-coding genes. To elucidate how Rtt103 engages two distinct CTD modifications that are differentially enriched at noncoding genes, we relied on NMR analysis of Rtt103 in complex with phospho-Thr4– or phospho-Ser2–bearing CTD peptides. The structural data reveal that Rtt103 interacts with phospho-Thr4 in a manner analogous to its interaction with phospho-Ser2–modified CTD. The same set of hydrogen bonds involving either the oxygen on phospho-Thr4 and the hydroxyl on Ser2, or the phosphate on Ser2 and the Thr4 hydroxyl, can be formed by rotation of an arginine side chain, leaving the intermolecular interface otherwise unperturbed. This economy of design enables Rtt103 to engage Pol II at distinct sets of genes with differentially enriched CTD marks.


2004 ◽  
Vol 24 (21) ◽  
pp. 9610-9618 ◽  
Author(s):  
Jia-peng Ruan ◽  
George K. Arhin ◽  
Elisabetta Ullu ◽  
Christian Tschudi

ABSTRACT Transcriptional mechanisms remain poorly understood in trypanosomatid protozoa. In particular, there is no knowledge about the function of basal transcription factors, and there is an apparent rarity of promoters for protein-coding genes transcribed by RNA polymerase (Pol) II. Here we describe a Trypanosoma brucei factor related to the TATA-binding protein (TBP). Although this TBP-related factor (TBP-related factor 4 [TRF4]) has about 31% identity to the TBP core domain, several key residues involved in TATA box binding are not conserved. Depletion of the T. brucei TRF4 (TbTRF4) by RNA interference revealed an essential role in RNA Pol I, II, and III transcription. Using chromatin immunoprecipitation, we further showed that TRF4 is recruited to the Pol I-transcribed procyclic acidic repetitive genes, Pol II-transcribed spliced leader RNA genes, and Pol III-transcribed U-snRNA and 7SL RNA genes, thus supporting a role for TbTRF4 in transcription performed by all three nuclear RNA polymerases. Finally, a search for TRF4 binding sites in the T. brucei genome led to the identification of such sites in the 3′ portion of certain protein-coding genes, indicating a unique aspect of Pol II transcription in these organisms.


2019 ◽  
Author(s):  
Melanie J. Fox ◽  
Jose F. Victorino ◽  
Whitney R. Smith-Kinnaman ◽  
Sarah A. Peck Justice ◽  
Hongyu Gao ◽  
...  

ABSTRACTRNA Polymerase II (RNAPII) transcription termination is regulated by the phosphorylation status of the C-terminal domain (CTD). Using disruption-compensation (DisCo) protein-protein interaction network analysis, interaction changes were observed within the termination machinery as a consequence of deletion of the serine 5 RNAPII CTD phosphatase Rtr1. Interactions between RNAPII and the cleavage factor IA (CF1A) subunit Pcf11 were reduced in rtr1Δ, whereas interactions with the CTD and RNA-binding termination factor Nrd1 were increased. These changes could be the result of altered interactions between the termination machinery and/or increased levels of premature termination of RNAPII. Transcriptome analysis in rtr1Δ cells found decreased pervasive transcription and a shift in balance of expression of sense and antisense transcripts. Globally, rtr1Δ leads to decreases in noncoding RNAs that are linked to the Nrd1, Nab3 and Sen1 (NNS)-dependent RNAPII termination pathway. Genome-wide analysis of RNAPII and Nrd1 occupancy suggests that loss of RTR1 leads to increased termination at noncoding genes and increased efficiency of snRNA termination. Additionally, premature termination increases globally at protein-coding genes where NNS is recruited during early elongation. The effects of rtr1Δ on RNA expression levels were erased following deletion of the exosome subunit Rrp6, which works with the NNS complex to rapidly degrade terminated noncoding RNAs. Overall, these data suggest that Rtr1 restricts the NNS-dependent termination pathway in WT cells to prevent premature RNAPII termination of mRNAs and ncRNAs. Additionally, Rtr1 phosphatase activity facilitates low-level elongation of noncoding transcripts that impact the transcriptome through RNAPII interference.AUTHOR SUMMARYMany cellular RNAs including those that encode for proteins are produced by the enzyme RNA Polymerase II. In this work, we have defined a new role for the phosphatase Rtr1 in the regulation of RNA Polymerase II progression from the start of transcription to the 3’ end of the gene where the nascent RNA from protein-coding genes is typically cleaved and polyadenylated. Deletion of the gene that encodes RTR1 leads to changes in the interactions between RNA polymerase II and the termination machinery. Rtr1 loss also causes early termination of RNA Polymerase II at many of its target gene types including protein coding genes and noncoding RNAs. Evidence suggests that the premature termination observed in RTR1 knockout cells occurs through the termination factor and RNA binding protein Nrd1 and its binding partner Nab3. Additionally, many of the prematurely terminated noncoding RNA transcripts are degraded by the Rrp6-containing nuclear exosome, a known component of the Nrd1-Nab3 termination coupled RNA degradation pathway. These findings suggest that Rtr1 normally promotes elongation of RNA Polymerase II transcripts through preventation of Nrd1-directed termination.


2008 ◽  
Vol 36 (3) ◽  
pp. 537-539 ◽  
Author(s):  
Sylvain Egloff ◽  
Shona Murphy

Pol II (RNA polymerase II) transcribes the genes encoding proteins and non-coding snRNAs (small nuclear RNAs). The largest subunit of Pol II contains a distinctive CTD (C-terminal domain) comprising a repetitive heptad amino acid sequence, Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. This domain is now known to play a major role in the processes of transcription and co-transcriptional RNA processing in expression of both snRNA and protein-coding genes. The heptapeptide repeat unit can be extensively modified in vivo and covalent modifications of the CTD during the transcription cycle result in the ordered recruitment of RNA-processing factors. The most studied modifications are the phosphorylation of the serine residues in position 2 and 5 (Ser2 and Ser5), which play an important role in the co-transcriptional processing of both mRNA and snRNA. An additional, recently identified CTD modification, phosphorylation of the serine residue in position 7 (Ser7) of the heptapeptide, is however specifically required for expression of snRNA genes. These findings provide interesting insights into the control of gene-specific Pol II function.


1992 ◽  
Vol 12 (6) ◽  
pp. 2644-2652 ◽  
Author(s):  
S D Brown ◽  
J Huang ◽  
L H Van der Ploeg

All eukaryotic protein-coding genes are believed to be transcribed by RNA polymerase (Pol) II. An exception may exist in the protozoan parasite Trypanosoma brucei, in which the genes encoding the variant surface glycoprotein (VSG) and procyclic acidic repetitive protein (PARP) are transcribed by an RNA polymerase that is resistant to the Pol II inhibitor alpha-amanitin. The PARP and VSG genes were proposed to be transcribed by Pol I (C. Shea, M. G.-S. Lee, and L. H. T. Van der Ploeg, Cell 50:603-612, 1987; G. Rudenko, M. G.-S. Lee, and L. H. T. Van der Ploeg, Nucleic Acids Res. 20:303-306, 1992), a suggestion that has been substantiated by the finding that trypanosomes can transcribe protein-coding genes by Pol I (G. Rudenko, H.-M. Chung, V. P. Pham, and L. H. T. Van der Ploeg, EMBO J. 10:3387-3397, 1991). We analyzed the sequence elements of the PARP promoter by linker scanning mutagenesis and compared the PARP promoter with Pol I, Pol II, and Pol III promoters. The PARP promoter appeared to be of limited complexity and contained at least two critical regions. The first was located adjacent to the transcription initiation site (nucleotides [nt] -69 to +12) and contained three discrete domains in which linker scanning mutants affected the transcriptional efficiency: at nt -69 to -56, -37 to -11, and -11 to +12. The second region was located between nt -140 and -131, and a third region may be located between nt -228 and -205. The nucleotide sequences of these elements, and their relative positioning with respect to the transcription initiation site did not resemble those of either Pol II or Pol III promoter elements, but rather reflected the organization of Pol I promoters in (i) similarity in the positioning of essential domains in the PARP promoter and Pol I promoter, (ii) strong sequence homology between the PARP core promoter element (nt -37 to -11) and identically positioned nucleotide sequences in the trypanosome rRNA and VSG gene promoters, and (iii) moderate effects on promoter activity of mutations around the transcription initiation site.


Sign in / Sign up

Export Citation Format

Share Document