scholarly journals A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves

2013 ◽  
Vol 75 (1) ◽  
pp. 26-39 ◽  
Author(s):  
Richard Hickman ◽  
Claire Hill ◽  
Christopher A. Penfold ◽  
Emily Breeze ◽  
Laura Bowden ◽  
...  
Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Author(s):  
Kazuo Nakashima ◽  
Hironori Takasaki ◽  
Junya Mizoi ◽  
Kazuo Shinozaki ◽  
Kazuko Yamaguchi-Shinozaki

2014 ◽  
Vol 42 (12) ◽  
pp. 7681-7693 ◽  
Author(s):  
Søren Lindemose ◽  
Michael K. Jensen ◽  
Jan Van de Velde ◽  
Charlotte O'Shea ◽  
Ken S. Heyndrickx ◽  
...  

2012 ◽  
Vol 444 (3) ◽  
pp. 395-404 ◽  
Author(s):  
Ditte H. Welner ◽  
Søren Lindemose ◽  
J. Günter Grossmann ◽  
Niels Erik Møllegaard ◽  
Addie N. Olsen ◽  
...  

NAC (NAM/ATAF/CUC) plant transcription factors regulate essential processes in development, stress responses and nutrient distribution in important crop and model plants (rice, Populus, Arabidopsis), which makes them highly relevant in the context of crop optimization and bioenergy production. The structure of the DNA-binding NAC domain of ANAC019 has previously been determined by X-ray crystallography, revealing a dimeric and predominantly β-fold structure, but the mode of binding to cognate DNA has remained elusive. In the present study, information from low resolution X-ray structures and small angle X-ray scattering on complexes with oligonucleotides, mutagenesis and (DNase I and uranyl photo-) footprinting, is combined to form a structural view of DNA-binding, and for the first time provide experimental evidence for the speculated relationship between plant-specific NAC proteins, WRKY transcription factors and the mammalian GCM (Glial cell missing) transcription factors, which all use a β-strand motif for DNA-binding. The structure shows that the NAC domain inserts the edge of its core β-sheet into the major groove, while leaving the DNA largely undistorted. The structure of the NAC–DNA complex and a new crystal form of the unbound NAC also indicate limited flexibility of the NAC dimer arrangement, which could be important in recognizing suboptimal binding sites.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hangxia Jin ◽  
Guangli Xu ◽  
Qingchang Meng ◽  
Fang Huang ◽  
Deyue Yu

GmNAC5 is a member of NAM subfamily belonging to NAC transcription factors in soybean (Glycine max(L.) Merr.). Studies on NAC transcription factors have shown that this family functioned in the regulation of shoot apical meristem (SAM), hormone signalling, and stress responses. In this study, we examined the expression levels ofGmNAC5.GmNAC5was highly expressed in the roots and immature seeds, especially strongly in immature seeds of 40 days after flowering. In addition, we found thatGmNAC5was induced by mechanical wounding, high salinity, and cold treatments but was not induced by abscisic acid (ABA). The subcellular localization assay suggested that GmNAC5 was targeted at nucleus. Together, it was suggested that GmNAC5 might be involved in seed development and abiotic stress responses in soybean.


2012 ◽  
Vol 34 (8) ◽  
pp. 993-1002 ◽  
Author(s):  
Li-Jun SUN ◽  
Da-Yong LI ◽  
Hui-Juan ZHANG ◽  
Feng-Ming SONG

Sign in / Sign up

Export Citation Format

Share Document