scholarly journals Porphobilinogen deaminase HEMC interacts with the PPR-protein AtECB2 for chloroplast RNA editing

2017 ◽  
Vol 92 (4) ◽  
pp. 546-556 ◽  
Author(s):  
Chao Huang ◽  
Qing-Bo Yu ◽  
Zi-Ran Li ◽  
Lin-Shan Ye ◽  
Ling Xu ◽  
...  
2019 ◽  
Author(s):  
Yueming Kelly Sun ◽  
Bernard Gutmann ◽  
Ian Small

AbstractCytosine (C) to uracil (U) RNA editing in plant mitochondria and chloroplasts is facilitated by site-specific pentatricopeptide repeat (PPR) editing factors. PPR editing factors contain multiple types of PPR motifs, and PPR motifs of the same type also show sequence variations. Therefore, no PPR motifs are invariant within a PPR protein or between different PPR proteins. This work evaluates the functional diversity of PPR motifs in CHLOROPLAST RNA EDITING FACTOR 3 (CREF3). The results indicate that previously overlooked features of PPR editing factors could also contribute to RNA editing activity. In particular, the N-terminal degenerated PPR motifs and the two L1-type PPR motifs in CREF3 are functionally indispensable. Furthermore, PPR motifs of the same type in CREF3 are not interchangeable. These non-canonical features of CREF3 have important implications on the understanding of PPR-facilitated RNA editing in plant organelles.


2016 ◽  
Vol 67 (19) ◽  
pp. 5687-5698 ◽  
Author(s):  
Tingting Xie ◽  
Dan Chen ◽  
Jian Wu ◽  
Xiaorong Huang ◽  
Yifan Wang ◽  
...  

2003 ◽  
Vol 270 (20) ◽  
pp. 4070-4081 ◽  
Author(s):  
Takahiro Nakamura ◽  
Karin Meierhoff ◽  
Peter Westhoff ◽  
Gadi Schuster

Plant Science ◽  
2019 ◽  
Vol 278 ◽  
pp. 64-69 ◽  
Author(s):  
Chao Huang ◽  
Zi-Ran Li ◽  
Qing-Bo Yu ◽  
Lin-Shan Ye ◽  
Yong-Lan Cui ◽  
...  
Keyword(s):  

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 146
Author(s):  
Yuhong Xiong ◽  
Jing Fang ◽  
Xiaohan Jiang ◽  
Tengfei Wang ◽  
Kangchen Liu ◽  
...  

Kiwifruit (Actinidia chinensis) is well known for its high vitamin C content and good taste. Various diseases, especially bacterial canker, are a serious threat to the yield of kiwifruit. Multiple organellar RNA editing factor (MORF) genes are pivotal factors in the RNA editosome that mediates Cytosine-to-Uracil RNA editing, and they are also indispensable for the regulation of chloroplast development, plant growth, and response to stresses. Although the kiwifruit genome has been released, little is known about MORF genes in kiwifruit at the genome-wide level, especially those involved in the response to pathogens stress. In this study, we identified ten MORF genes in the kiwifruit genome. The genomic structures and chromosomal locations analysis indicated that all the MORF genes consisted of three conserved motifs, and they were distributed widely across the seven linkage groups and one contig of the kiwifruit genome. Based on the structural features of MORF proteins and the topology of the phylogenetic tree, the kiwifruit MORF gene family members were classified into six groups (Groups A–F). A synteny analysis indicated that two pairs of MORF genes were tandemly duplicated and five pairs of MORF genes were segmentally duplicated. Moreover, based on analysis of RNA-seq data from five tissues of kiwifruit, we found that both expressions of MORF genes and chloroplast RNA editing exhibited tissue-specific patterns. MORF2 and MORF9 were highly expressed in leaf and shoot, and may be responsible for chloroplast RNA editing, especially the ndhB genes. We also observed different MORF expression and chloroplast RNA editing profiles between resistant and susceptible kiwifruits after pathogen infection, indicating the roles of MORF genes in stress response by modulating the editing extend of mRNA. These results provide a solid foundation for further analyses of the functions and molecular evolution of MORF genes, in particular, for clarifying the resistance mechanisms in kiwifruits and breeding new cultivars with high resistance.


2018 ◽  
Vol 87 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Peng Zheng ◽  
Qiang He ◽  
Xiaomin Wang ◽  
Jumin Tu ◽  
Jianhua Zhang ◽  
...  

2020 ◽  
Vol 71 (18) ◽  
pp. 5495-5505 ◽  
Author(s):  
Rui Liu ◽  
Shi-Kai Cao ◽  
Aqib Sayyed ◽  
Huan-Huan Yang ◽  
Jiao Zhao ◽  
...  

Abstract C-to-U RNA editing in plant mitochondria requires the participation of many nucleus-encoded factors, most of which are pentatricopeptide repeat (PPR) proteins. There is a large number of PPR proteins and the functions many of them are unknown. Here, we report a mitochondrion-localized DYW-subgroup PPR protein, PPR27, which functions in the editing of multiple mitochondrial transcripts in maize. The ppr27 mutant is completely deficient in C-to-U editing at the ccmFN-1357 and rps3-707 sites, and editing at six other sites is substantially reduced. The lack of editing at ccmFN-1357 causes a deficiency of CcmFN protein. As CcmFN functions in the maturation pathway of cytochrome proteins that are subunits of mitochondrial complex III, its deficiency results in an absence of cytochrome c1 and cytochrome c proteins. Consequently, the assembly of mitochondrial complex III and super-complex I+III2 is decreased, which impairs the electron transport chain and respiration, leading to arrests in embryogenesis and endosperm development in ppr27. In addition, PPR27 was found to physically interact with ZmMORF1, which interacts with ZmMORF8, suggesting that these three proteins may facilitate C-to-U RNA editing via the formation of a complex in maize mitochondria. This RNA editing is essential for complex III assembly and seed development in maize.


2006 ◽  
Vol 23 (10) ◽  
pp. 1912-1921 ◽  
Author(s):  
Michael Tillich ◽  
Pascal Lehwark ◽  
Brian R. Morton ◽  
Uwe G. Maier
Keyword(s):  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ru Chang Ren ◽  
Xu Wei Yan ◽  
Ya Jie Zhao ◽  
Yi Ming Wei ◽  
Xiaoduo Lu ◽  
...  

Abstract Background Pentatricopeptide repeat (PPR) proteins compose a large protein family whose members are involved in both RNA processing in organelles and plant growth. Previous reports have shown that E-subgroup PPR proteins are involved in RNA editing. However, the additional functions and roles of the E-subgroup PPR proteins are unknown. Results In this study, we developed and identified a new maize kernel mutant with arrested embryo and endosperm development, i.e., defective kernel (dek) 55 (dek55). Genetic and molecular evidence suggested that the defective kernels resulted from a mononucleotide alteration (C to T) at + 449 bp within the open reading frame (ORF) of Zm00001d014471 (hereafter referred to as DEK55). DEK55 encodes an E-subgroup PPR protein within the mitochondria. Molecular analyses showed that the editing percentage of 24 RNA editing sites decreased and that of seven RNA editing sites increased in dek55 kernels, the sites of which were distributed across 14 mitochondrial gene transcripts. Moreover, the splicing efficiency of nad1 introns 1 and 4 and nad4 intron 1 significantly decreased in dek55 compared with the wild type (WT). These results indicate that DEK55 plays a crucial role in RNA editing at multiple sites as well as in the splicing of nad1 and nad4 introns. Mutation in the DEK55 gene led to the dysfunction of mitochondrial complex I. Moreover, yeast two-hybrid assays showed that DEK55 interacts with two multiple organellar RNA-editing factors (MORFs), i.e., ZmMORF1 (Zm00001d049043) and ZmMORF8 (Zm00001d048291). Conclusions Our results demonstrated that a mutation in the DEK55 gene affects the mitochondrial function essential for maize kernel development. Our results also provide novel insight into the molecular functions of E-subgroup PPR proteins involved in plant organellar RNA processing.


Sign in / Sign up

Export Citation Format

Share Document