scholarly journals RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA

2003 ◽  
Vol 270 (20) ◽  
pp. 4070-4081 ◽  
Author(s):  
Takahiro Nakamura ◽  
Karin Meierhoff ◽  
Peter Westhoff ◽  
Gadi Schuster
RNA Biology ◽  
2010 ◽  
Vol 7 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Michael Tillich ◽  
Susanne Beick ◽  
Christian Schmitz-Linneweber

1992 ◽  
Vol 267 (27) ◽  
pp. 19075-19081
Author(s):  
B Franzetti ◽  
P Carol ◽  
R Mache

2017 ◽  
Vol 73 (4) ◽  
pp. 294-315 ◽  
Author(s):  
Kimberly A. Stanek ◽  
Jennifer Patterson-West ◽  
Peter S. Randolph ◽  
Cameron Mura

The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homolog has been identified in the phylogenetically deep-branching thermophileAquifex aeolicus(Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore,AaeHfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures ofAaeHfq were determined in space groupsP1 andP6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U6RNA reveals that the outer rim of theAaeHfq hexamer features a well defined binding pocket that is selective for uracil. ThisAaeHfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.


2021 ◽  
Vol 60 ◽  
pp. 102535
Author(s):  
Noam Shahar ◽  
Tamar Elman ◽  
Rosalind Williams-Carrier ◽  
Oren Ben-Zvi ◽  
Iftach Yacoby ◽  
...  

2020 ◽  
Author(s):  
Nikolay Manavski ◽  
Louis-Valentin Meteignier ◽  
Margarita Rojas ◽  
Andreas Brachmann ◽  
Alice Barkan ◽  
...  

ABSTRACTPentatricopeptide repeat (PPR) proteins are helical repeat-proteins that bind RNA in a modular fashion with a sequence-specificity that can be manipulated by the use of an amino acid code. As such, PPR repeats are promising scaffolds for the design of RNA binding proteins for synthetic biology applications. However, the in vivo functional capabilities of artificial PPR proteins built from consensus PPR motifs are just starting to be explored. Here, we report in vivo functions of an artificial PPR protein, dPPRrbcL, made of consensus PPR motifs that were designed to bind a sequence near the 5’ end of rbcL transcripts in Arabidopsis chloroplasts. We used a functional complementation assay to demonstrate that this protein bound its intended RNA target with specificity in vivo and that it substituted for a natural PPR protein by stabilizing processed rbcL mRNA. We targeted a second protein of analogous design to the petL 5’ UTR, where it substituted for the native stabilizing PPR protein PGR3, albeit inefficiently. These results showed that artificial PPRs can be engineered to functionally mimic the class of native PPR proteins that serve as physical barriers against exoribonucleases.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5056-5056 ◽  
Author(s):  
Julia Fremerey ◽  
Pavel Morozov ◽  
Cindy Meyer ◽  
Aitor Garzia ◽  
Marianna Teplova ◽  
...  

Abstract Introduction Nucleolin (NCL) is a multifunctional, proliferation-associated factor that is overexpressed in many cancers and has already been demonstrated to play a profound role in leukemogenesis (Abdelmohsen and Gorospe, 2012; Shen et al., 2014). This can be linked to an increased synthesis of ribosomal RNA (rRNA). Thus, in leukemic cells, high expression levels of NCL contribute to malignant transformation through the increase of rRNA synthesis, which is required to sustain high levels of protein synthesis. Physiologically, NCL is a highly abundant, nucleolar RNA-binding protein that is implicated in the regulation of polymerase I transcription, post-transcriptional gene regulation, and plays a central role in ribosome biogenesis (Srivastava and Pollard, 1999). To further elucidate the exact role of NCL, this study focused on the characterization of the RNA-binding properties and protein-interactions of NCL in the context of ribosome biogenesis. Methods In order to identify transcriptome-wide binding sites and the cellular RNA targets of NCL, PAR-CLIP (photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation) and RIP-Seq (RNA immunoprecipitation sequencing) analyses were carried out in HEK 293 cells. PAR-CLIP is characterized by the incorporation of 4-thiouridine into newly transcribed RNA that causes a T to C conversion in the corresponding cDNA of crosslinked RNA (Hafner et al., 2010). The RNA-binding properties and the interaction of NCL with its identified RNA targets were elucidated by electrophoretic mobility shift assays, isothermal titration calorimetry and size-exclusion chromatography. To further define the role of NCL in ribosome biogenesis and the effect on precursor rRNA levels, siRNA mediated knockdown of NCL was employed followed by RNA sequencing. Furthermore, to characterize the interaction network of NCL on a proteome-wide level, mass-spectrometry was performed. Results This study focuses on the characterization of the RNA-binding properties of NCL and provides the first PAR-CLIP data set of NCL and identifies small nucleolar RNAs (snoRNA) and precursor rRNA as main targets of NCL, both of which were further confirmed by RIP-Seq analysis. Binding sites of NCL were identified in the 5'ETS (external transcribed spacer), after the first cleavage site, in ITS1 and ITS2 (internal transcribed spacer) within the precursor rRNA, indicating that NCL might play a role in the early processing steps of ribosome biogenesis within the nucleolus. Biochemical and structural binding analyses reveal that NCL interacts along the complete precursor region and shows high binding affinity to G/C/U-rich repeat sequences, which is in agreement with the nucleotide composition of the primary rRNA transcript. Moreover, we propose that siRNA mediated knockdown of NCL inhibits polymerase I transcription, which is shown by decreased expression levels of the precursor rRNA transcript. On the proteome-wide level, mass-spectrometry analysis of NCL identified several interaction partners including block of proliferation 1 (BOP1), DEAD-box RNA helicase 18 (DDX18), and 5'-3' exoribonuclease 2 (XRN2) and numerous ribosomal proteins of the small and the large ribosomal subunits including RPS24, RPL11, RPL35A, and RPL36. Conclusion This study provides evidence that NCL is highly associated with the process of ribosome biogenesis on the proteome- and transcriptome-wide level. Therefore, NCL might serve as a promising biochemical target in the context of increased ribosome biogenesis in cancer. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 40 (4) ◽  
pp. 1856-1867 ◽  
Author(s):  
Tatsuhiko Someya ◽  
Seiki Baba ◽  
Mai Fujimoto ◽  
Gota Kawai ◽  
Takashi Kumasaka ◽  
...  

1997 ◽  
Vol 246 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Alexander Serganov ◽  
Alexey Rak ◽  
Maria Garber ◽  
Joseph Reinbolt ◽  
Bernard Ehresmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document