scholarly journals The ethylene response factor Va ERF 092 from Amur grape regulates the transcription factor Va WRKY 33, improving cold tolerance

Author(s):  
Xiaoming Sun ◽  
Langlang Zhang ◽  
Darren C. J. Wong ◽  
Yi Wang ◽  
Zhenfei Zhu ◽  
...  
2018 ◽  
Author(s):  
Chun-Yen Chen ◽  
Pei-Hsuan Lin ◽  
Kun-Hung Chen ◽  
Yi-Sheng Cheng

ABSTRACTThe phytohormone ethylene is widely involved in many developmental processes and is a crucial regulator of defense responses against biotic and abiotic stresses in plants. Ethylene-responsive element binding protein (EREBP), a member of the APETALA2/ethylene response factor (AP2/ERF) superfamily, is a transcription factor that regulates stress-responsive genes by recognizing a specific cis-acting element of target DNA. A previous study showed only the NMR structure of the AP2/ERF domain of AtERF100 in complex with a GCC box DNA motif. In this report, we determined the crystal structure of AtERF96 in complex with a GCC box at atomic resolution. We analyzed the binding residues of the conserved AP2/ERF domain in the DNA recognition sequence. In addition to the AP2/ERF domain, an N-terminal α-helix of AtERF96 participates in DNA interaction in the flanking region. We also demonstrated the structure of AtERF96 EDLL motif, a unique conserved motif in the group IX of AP2/ERF family, is critical for the transactivation of defense-related genes. Our study establishes the structural basis of the AtERF96 transcription factor in complex with the GCC box, as well as the DNA binding mechanisms of the N-terminal α-helix and AP2/ERF domain.


2020 ◽  
Vol 104 (4-5) ◽  
pp. 483-498
Author(s):  
Chun-Yen Chen ◽  
Pei-Hsuan Lin ◽  
Kun-Hung Chen ◽  
Yi-Sheng Cheng

Abstract The phytohormone ethylene is widely involved in many developmental processes and is a crucial regulator of defense responses against biotic and abiotic stresses in plants. Ethylene-responsive element binding protein, a member of the APETALA2/ethylene response factor (AP2/ERF) superfamily, is a transcription factor that regulates stress-responsive genes by recognizing a specific cis-acting element of target DNA. A previous study showed only the NMR structure of the AP2/ERF domain of AtERF100 in complex with a GCC box DNA motif. In this report, we determined the crystal structure of AtERF96 in complex with a GCC box at atomic resolution. We analyzed the binding residues of the conserved AP2/ERF domain in the DNA recognition sequence. In addition to the AP2/ERF domain, an N-terminal α-helix of AtERF96 participates in DNA interaction in the flanking region. We also demonstrated the structure of AtERF96 EDLL motif, a unique conserved motif in the group IX of AP2/ERF family, might involve in the transactivation of defense-related genes. Our study establishes the structural basis of the AtERF96 transcription factor in complex with the GCC box, as well as the DNA binding mechanisms of the N-terminal α-helix and AP2/ERF domain.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaoming Sun ◽  
Tingting Zhao ◽  
Shuheng Gan ◽  
Xiaodie Ren ◽  
Linchuan Fang ◽  
...  

2010 ◽  
Vol 20 (4) ◽  
pp. 857-866 ◽  
Author(s):  
Yun Tian ◽  
Haiwen Zhang ◽  
Xiaowu Pan ◽  
Xiaoliang Chen ◽  
Zhijin Zhang ◽  
...  

2017 ◽  
Vol 134 ◽  
pp. 33-44 ◽  
Author(s):  
Rambod Abiri ◽  
Noor Azmi Shaharuddin ◽  
Mahmood Maziah ◽  
Zetty Norhana Balia Yusof ◽  
Narges Atabaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document