scholarly journals The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening

2017 ◽  
Vol 29 (6) ◽  
pp. 1316-1334 ◽  
Author(s):  
Tong Li ◽  
Yaxiu Xu ◽  
Lichao Zhang ◽  
Yinglin Ji ◽  
Dongmei Tan ◽  
...  
PROTOPLASMA ◽  
2016 ◽  
Vol 254 (1) ◽  
pp. 401-408 ◽  
Author(s):  
Yanwen Yu ◽  
Dexin Yang ◽  
Shirong Zhou ◽  
Juntao Gu ◽  
Fengru Wang ◽  
...  

2020 ◽  
Author(s):  
Yinglin Ji ◽  
Yi Qu ◽  
Zhongyu Jiang ◽  
Xin Su ◽  
Pengtao Yue ◽  
...  

ABSTRACTThe plant hormone ethylene is important for the ripening of climacteric fruit, such as pear (Pyrus ussuriensis), and the brassinosteroid (BR) class of phytohormones affects ethylene biosynthesis during ripening, although via an unknown molecular mechanism. Here, we observed that exogenous BR treatment suppressed ethylene production during pear fruit ripening, and that the expression of the transcription factor PuBZR1 was enhanced by epibrassinolide (EBR) treatment during pear fruit ripening. PuBZR1 was shown to interact with PuACO1, which converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and suppress its activity. We also observed that BR-activated PuBZR1 bound to the promoters of PuACO1 and of PuACS1a, which encodes ACC synthase, and directly suppressed their transcription. Moreover, PuBZR1 suppressed the expression of transcription factor PuERF2 by binding its promoter, and PuERF2 bound to the promoters of PuACO1 and PuACS1a. We concluded that PuBZR1 indirectly suppresses the transcription of PuACO1 and PuACS1a through its regulation of PuERF2. Ethylene production and the expression profiles of the corresponding apple (Malus domestica) homologs showed similar changes following EBR treatment. Together, these results suggest that BR-activated BZR1 suppresses ACO1 activity and the expression of ACO1 and ACS1a, thereby reducing ethylene production during pear and apple fruit ripening. This likely represents a conserved mechanism by which exogenous BR suppresses ethylene biosynthesis during climacteric fruit ripening.One-sentence summaryBR-activated BZR1 suppresses ACO1 activity and expression of ACO1 and ACS1a, which encode two ethylene biosynthesis enzymes, thereby reducing ethylene production during pear and apple fruit ripening.


2018 ◽  
Author(s):  
Chun-Yen Chen ◽  
Pei-Hsuan Lin ◽  
Kun-Hung Chen ◽  
Yi-Sheng Cheng

ABSTRACTThe phytohormone ethylene is widely involved in many developmental processes and is a crucial regulator of defense responses against biotic and abiotic stresses in plants. Ethylene-responsive element binding protein (EREBP), a member of the APETALA2/ethylene response factor (AP2/ERF) superfamily, is a transcription factor that regulates stress-responsive genes by recognizing a specific cis-acting element of target DNA. A previous study showed only the NMR structure of the AP2/ERF domain of AtERF100 in complex with a GCC box DNA motif. In this report, we determined the crystal structure of AtERF96 in complex with a GCC box at atomic resolution. We analyzed the binding residues of the conserved AP2/ERF domain in the DNA recognition sequence. In addition to the AP2/ERF domain, an N-terminal α-helix of AtERF96 participates in DNA interaction in the flanking region. We also demonstrated the structure of AtERF96 EDLL motif, a unique conserved motif in the group IX of AP2/ERF family, is critical for the transactivation of defense-related genes. Our study establishes the structural basis of the AtERF96 transcription factor in complex with the GCC box, as well as the DNA binding mechanisms of the N-terminal α-helix and AP2/ERF domain.


2020 ◽  
Vol 21 (8) ◽  
pp. 2846 ◽  
Author(s):  
Hui Zhou ◽  
Lei Zhao ◽  
Qiurui Yang ◽  
Mohamed Hamdy Amar ◽  
Collins Ogutu ◽  
...  

Peach (Prunus persica) is a climacteric fruit with a relatively short shelf life due to its fast ripening or softening process. Here, we report the association of gene families encoding ethylene insensitive-3 like (EIL) and ethylene response factor (ERF) with fruit ripening in peach. In total, 3 PpEILs and 12 PpERFs were highly expressed in fruit, with the majority showing a peak of expression at different stages. All three EILs could activate ethylene biosynthesis genes PpACS1 and PpACO1. One out of the 12 PpERFs, termed PpERF.E2, is a homolog of ripening-associated ERFs in tomato, with a consistently high expression throughout fruit development and an ability to activate PpACS1 and PpACO1. Additionally, four subgroup F PpERFs harboring the EAR repressive motif were able to repress the PpACO1 promoter but could also activate the PpACS1 promoter. Promoter deletion assay revealed that PpEILs and PpERFs could participate in transcriptional regulation of PpACS1 through either direct or indirect interaction with various cis-elements. Taken together, these results suggested that all three PpEILs and PpERF.E2 are candidates involved in ethylene biosynthesis, and EAR motif-containing PpERFs may function as activator or repressor of ethylene biosynthesis genes in peach. Our study provides an insight into the roles of EILs and ERFs in the fruit ripening process.


2018 ◽  
Vol 163 (1) ◽  
pp. 124-135 ◽  
Author(s):  
Ping-Ping Hao ◽  
Guo-Ming Wang ◽  
Hai-Yan Cheng ◽  
Ya-Qi Ke ◽  
Kai-Jie Qi ◽  
...  

2020 ◽  
Vol 104 (4-5) ◽  
pp. 483-498
Author(s):  
Chun-Yen Chen ◽  
Pei-Hsuan Lin ◽  
Kun-Hung Chen ◽  
Yi-Sheng Cheng

Abstract The phytohormone ethylene is widely involved in many developmental processes and is a crucial regulator of defense responses against biotic and abiotic stresses in plants. Ethylene-responsive element binding protein, a member of the APETALA2/ethylene response factor (AP2/ERF) superfamily, is a transcription factor that regulates stress-responsive genes by recognizing a specific cis-acting element of target DNA. A previous study showed only the NMR structure of the AP2/ERF domain of AtERF100 in complex with a GCC box DNA motif. In this report, we determined the crystal structure of AtERF96 in complex with a GCC box at atomic resolution. We analyzed the binding residues of the conserved AP2/ERF domain in the DNA recognition sequence. In addition to the AP2/ERF domain, an N-terminal α-helix of AtERF96 participates in DNA interaction in the flanking region. We also demonstrated the structure of AtERF96 EDLL motif, a unique conserved motif in the group IX of AP2/ERF family, might involve in the transactivation of defense-related genes. Our study establishes the structural basis of the AtERF96 transcription factor in complex with the GCC box, as well as the DNA binding mechanisms of the N-terminal α-helix and AP2/ERF domain.


Sign in / Sign up

Export Citation Format

Share Document