scholarly journals ODORANT1 targets multiple metabolic networks in petunia flowers

2021 ◽  
Author(s):  
Maaike R. Boersma ◽  
Ryan M. Patrick ◽  
Sonia L. Jillings ◽  
Nur Fariza M. Shaipulah ◽  
Pulu Sun ◽  
...  
Keyword(s):  
2012 ◽  
Vol 18 (6) ◽  
pp. 1075
Author(s):  
Jing GUO ◽  
Zixiang XU ◽  
Yaxing FU ◽  
Biyun LIU ◽  
Jing MENG ◽  
...  
Keyword(s):  

2010 ◽  
Vol 37 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Ting-Ting ZHOU ◽  
Kin-Fung YUNG ◽  
Chung Keith CHAN Chun ◽  
Zheng-Hua WANG ◽  
Yun-Ping ZHU ◽  
...  

2020 ◽  
Vol 28 ◽  
Author(s):  
Ilaria Granata ◽  
Mario Manzo ◽  
Ari Kusumastuti ◽  
Mario R Guarracino

Purpose: Systems biology and network modeling represent, nowadays, the hallmark approaches for the development of predictive and targeted-treatment based precision medicine. The study of health and disease as properties of the human body system allows the understanding of the genotype-phenotype relationship through the definition of molecular interactions and dependencies. In this scenario, metabolism plays a central role as its interactions are well characterized and it is considered an important indicator of the genotype-phenotype associations. In metabolic systems biology, the genome-scale metabolic models are the primary scaffolds to integrate multi-omics data as well as cell-, tissue-, condition-specific information. Modeling the metabolism has both investigative and predictive values. Several methods have been proposed to model systems, which involve steady-state or kinetic approaches, and to extract knowledge through machine and deep learning. Method: This review collects, analyzes, and compares the suitable data and computational approaches for the exploration of metabolic networks as tools for the development of precision medicine. To this extent, we organized it into three main sections: "Data and Databases", "Methods and Tools", and "Metabolic Networks for medicine". In the first one, we have collected the most used data and relative databases to build and annotate metabolic models. In the second section, we have reported the state-of-the-art methods and relative tools to reconstruct, simulate, and interpret metabolic systems. Finally, we have reported the most recent and innovative studies which exploited metabolic networks for the study of several pathological conditions, not only those directly related to the metabolism. Conclusion: We think that this review can be a guide to researchers of different disciplines, from computer science to biology and medicine, in exploring the power, challenges and future promises of the metabolism as predictor and target of the so-called P4 medicine (predictive, preventive, personalized and participatory).


2018 ◽  
Vol 14 (1) ◽  
pp. 4-10
Author(s):  
Fang Jing ◽  
Shao-Wu Zhang ◽  
Shihua Zhang

Background:Biological network alignment has been widely studied in the context of protein-protein interaction (PPI) networks, metabolic networks and others in bioinformatics. The topological structure of networks and genomic sequence are generally used by existing methods for achieving this task.Objective and Method:Here we briefly survey the methods generally used for this task and introduce a variant with incorporation of functional annotations based on similarity in Gene Ontology (GO). Making full use of GO information is beneficial to provide insights into precise biological network alignment.Results and Conclusion:We analyze the effect of incorporation of GO information to network alignment. Finally, we make a brief summary and discuss future directions about this topic.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Justin Y. Lee ◽  
Britney Nguyen ◽  
Carlos Orosco ◽  
Mark P. Styczynski

Abstract Background The topology of metabolic networks is both well-studied and remarkably well-conserved across many species. The regulation of these networks, however, is much more poorly characterized, though it is known to be divergent across organisms—two characteristics that make it difficult to model metabolic networks accurately. While many computational methods have been built to unravel transcriptional regulation, there have been few approaches developed for systems-scale analysis and study of metabolic regulation. Here, we present a stepwise machine learning framework that applies established algorithms to identify regulatory interactions in metabolic systems based on metabolic data: stepwise classification of unknown regulation, or SCOUR. Results We evaluated our framework on both noiseless and noisy data, using several models of varying sizes and topologies to show that our approach is generalizable. We found that, when testing on data under the most realistic conditions (low sampling frequency and high noise), SCOUR could identify reaction fluxes controlled only by the concentration of a single metabolite (its primary substrate) with high accuracy. The positive predictive value (PPV) for identifying reactions controlled by the concentration of two metabolites ranged from 32 to 88% for noiseless data, 9.2 to 49% for either low sampling frequency/low noise or high sampling frequency/high noise data, and 6.6–27% for low sampling frequency/high noise data, with results typically sufficiently high for lab validation to be a practical endeavor. While the PPVs for reactions controlled by three metabolites were lower, they were still in most cases significantly better than random classification. Conclusions SCOUR uses a novel approach to synthetically generate the training data needed to identify regulators of reaction fluxes in a given metabolic system, enabling metabolomics and fluxomics data to be leveraged for regulatory structure inference. By identifying and triaging the most likely candidate regulatory interactions, SCOUR can drastically reduce the amount of time needed to identify and experimentally validate metabolic regulatory interactions. As high-throughput experimental methods for testing these interactions are further developed, SCOUR will provide critical impact in the development of predictive metabolic models in new organisms and pathways.


Author(s):  
Ryan M Patrick ◽  
Xing-Qi Huang ◽  
Natalia Dudareva ◽  
Ying Li

Abstract Biosynthesis of secondary metabolites relies on primary metabolic pathways to provide precursors, energy, and cofactors, thus requiring coordinated regulation of primary and secondary metabolic networks. However, to date, it remains largely unknown how this coordination is achieved. Using Petunia hybrida flowers, which emit high levels of phenylpropanoid/benzenoid volatile organic compounds (VOCs), we uncovered genome-wide dynamic deposition of histone H3 lysine 9 acetylation (H3K9ac) during anthesis as an underlying mechanism to coordinate primary and secondary metabolic networks. The observed epigenome reprogramming is accompanied by transcriptional activation at gene loci involved in primary metabolic pathways that provide precursor phenylalanine, as well as secondary metabolic pathways to produce volatile compounds. We also observed transcriptional repression among genes involved in alternative phenylpropanoid branches that compete for metabolic precursors. We show that GNAT family histone acetyltransferase(s) (HATs) are required for the expression of genes involved in VOC biosynthesis and emission, by using chemical inhibitors of HATs, and by knocking down a specific HAT gene, ELP3, through transient RNAi. Together, our study supports that regulatory mechanisms at chromatin level may play an essential role in activating primary and secondary metabolic pathways to regulate VOC synthesis in petunia flowers.


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
You‐Tyun Wang ◽  
Min‐Ru Lin ◽  
Wei‐Chen Chen ◽  
Wu‐Hsiung Wu ◽  
Feng‐Sheng Wang

Sign in / Sign up

Export Citation Format

Share Document