scholarly journals Structural Modification of Pristine Graphene Network Towards Nanoporous Graphene Membrane: A Review

Author(s):  
Mohd ‘Azizir-Rahim Mukri ◽  
Mohd Syafiq Elias ◽  
Madzlan Aziz ◽  
Masaki Tanemura ◽  
Mohd Zamri Mohd Yusop

A single graphene layer is superior many ways preferably in electronic devices application. However, mild modification of the graphene network could open a new potential to the ultrathin graphene membrane. Moreover, recent studies demonstrated that a few simple techniques could generate and control the nanopores size on single layer graphene sheet simultaneously. This review paper will discuss all potential techniques that are capable to generate nanopores structure on the pristine single layer graphene network.

2019 ◽  
Vol 12 (11) ◽  
pp. 3305-3312 ◽  
Author(s):  
Guangwei He ◽  
Shiqi Huang ◽  
Luis Francisco Villalobos ◽  
Jing Zhao ◽  
Mounir Mensi ◽  
...  

A single-layer nanoporous graphene membrane functionalized with CO2-phillic polymers shows extremely fast, selective CO2 transport.


2016 ◽  
Vol 11 (1) ◽  
pp. 73-76 ◽  
Author(s):  
A. Chogani ◽  
A. Moosavi ◽  
M. Rahiminejad

Abstract In recent years carbon nanotubes and other carbon nanostructures such as graphene sheets have attracted a lot of attention due to their unique mechanical, thermal and electrical properties. These structures can be used in desalination of sea water, removal of hazardous substances from water tanks, gases separation, and so on. The nanoporous single layer graphene membranes are very efficient for desalinating water due to their very low thickness. In this method, water-flow thorough the membrane and salt rejection strongly depend on the applied pressure and size of nanopores that are created in graphene membrane. In this study, the mechanism of passing water and salt ions through nanoporous single-layer graphene membrane are simulated using classical molecular dynamics. We examined the effects of applied pressure and size of nanopores on desalination performance of NPG membrane. Unlike previous researches, we considered the flexibility of the membrane. The results show that by increasing the applied pressure and diameter of the nanopores, water-flow through membrane increases, meanwhile salt rejection decreases.


2011 ◽  
Vol 1336 ◽  
Author(s):  
Amirhasan Nourbakhsh ◽  
Mirco Cantoro ◽  
Tom Vosch ◽  
Geoffrey Pourtois ◽  
Johan Hofkens ◽  
...  

ABSTRACTWe investigate the structural, optical and electrical properties of single-layer graphene exposed to oxygen plasma treatment. We find that the pristine semimetallic behavior of graphene disappears upon plasma treatment, in favour of the opening of a bandgap and the featuring of semiconducting properties. The metal-to-semiconductor transition observed appears to be dependent on the plasma treatment time. The semiconducting behavior is also confirmed by photoluminescence measurements. The opening of a bandgap in graphene is explained in terms of graphene surface functionalization with oxygen atoms, bonded as epoxy groups. Ab initio calculations of the density of states show more details about the oxygen–graphene interaction and its effects on the graphene optoelectronic properties, predicting no states near the Fermi level at increasing epoxy group density. The structural changes are also monitored by Raman spectroscopy, showing the progressive evolution of the sp2 character of pristine graphene to sp3, due to the lattice decoration with out-of-plane epoxy groups.


Vacuum ◽  
2021 ◽  
pp. 110681
Author(s):  
Xudi Wang ◽  
Hanwen Lin ◽  
Hailin Bi ◽  
Qing Cao ◽  
Donghui Meng ◽  
...  

2010 ◽  
Vol 53 (2) ◽  
pp. 94-100
Author(s):  
Tomoki MACHIDA ◽  
Satoru MASUBUCHI ◽  
Masashi ONO ◽  
Miho ARAI ◽  
Takehiro YAMAGUCHI

2016 ◽  
Vol 253 (12) ◽  
pp. 2331-2335 ◽  
Author(s):  
Zuzana Komínková ◽  
Martin Kalbáč

Sign in / Sign up

Export Citation Format

Share Document