MINKOWSKI ISLAND FRACTAL PATCH ANTENNA WITH DIFFERENT SIZE OF COMPLIMENTARY QUADRUPLE P-SPIRAL SRR (QPS-SRR) STRUCTURES FOR BROADBAND APPLICATIONS

2016 ◽  
Vol 78 (6-3) ◽  
Author(s):  
Nornikman Hassan ◽  
Muhammad Syafiq Noor Azizi ◽  
Mohamad Hafize Ramli ◽  
Mohammad Hanif Mazlan ◽  
Mohamad Ariffin Mutalib ◽  
...  

A wideband Minkowski fractal antenna with complimentary quadruple P-spiral split ring resonator (QPS-SRR) is proposed in this paper. Four minis complimentary QPS-SRR structure had been connected to the corner of the main Minkowski Island fractal to investigate the effect to the resonant frequency, return loss, bandwidth and gain of the antenna. Firstly a basic Minkowski Island of Design A is simulating. Then 2-N of complimentary QPS-SRR (Design B1 and Design B2) is added to the antenna. Lastly, five different sizes of complimentary 4-N QPS-SRR (Design C1, Design C2, Design C3, Design C4 and Design C5) is added in the antenna to compared its effect. Design C is effect to resonate at two different frequencies of 2.28 GHz and 3.336 GHz with return loss of – 13.252 dB and – 19.296 dB. This antenna also can be applies at 2.4 GHz of WLAN application and 3.5 GHz WiMAX application with return loss performance of – 13.252 dB and -12.26 dB, respectively. It shows the single bandwidth of the 4.8 mm width x 4.8 mm length QPS-SRR (Design C3) is 1.218 GHz.

2021 ◽  
Author(s):  
Shantha Selvakumari R ◽  
Vishnoo Priyaa P

Abstract This paper presents the design and simulation of patch antenna loaded with metamaterial called Complementary Split Ring Resonator (CSRR) with increased gain and bandwidth suitable for wireless applications such as satellite, TV and radar applications. FR4 substrate with dielectric constant (εr ) of 4.4 is used. The radiating patch consists of CSRR structure fed by microstrip line to achieve triple(C, X, Ku ) band characteristics. The proposed antenna is designed and simulated using Ansys High Frequency Structural Simulator (HFSS). The proposed antenna with 4 rings having a resonant frequency of 7.662, 9.8510, 10.9455, 11.8410, 12.7365 and 13.7315GHz and the bandwidth of 230, 1090, 640, 580, 620 and 2000MHz respectively. The proposed antenna with 6 rings also having a resonant frequency of 7.7615, 9.9525, 11.0450, 11.9405 and13.7315GHz and bandwidth of 160, 1130, 490, 1360 and 1480MHz are achieved. The proposed antenna is analyzed in terms of return loss, VSWR, gain and bandwidth. The electric field and surface current distribution were observed for the proposed antenna having 6 rings.


2016 ◽  
Vol 78 (5-5) ◽  
Author(s):  
Nornikman Hassan ◽  
Mohamad Zoinol Abidin Abd. Aziz ◽  
Muhammad Syafiq Noor Azizi ◽  
Mohamad Hafize Ramli ◽  
Mohd Azlishah Othman ◽  
...  

In this project, the different locations of the quadruple P-spiral split ring resonator (MI-SRR) structure are embedded in the basic rectangular patch antenna. It started with a basic rectangular microstrip patch antenna that simulated in CST Microwave Studio software. After that, four different locations (Location A, Location B, Location C and Location D) of QPS-SRR had chosen to compare its performance of return loss, resonant frequency, surface current radiation pattern, and gain. Location A is representing the antenna with the QPS-SRR at the center part of the patch while Location B has the QPS-SRR at the upper part of the FR-4 substrate. For the Location C and Location D represent the antenna with MI-SRR at the ground at antenna with MI-SRR at the other layer, respectively. Compared with the basic rectangular antenna with only – 27.082 dB, the best return loss was reached by Location A with - 34.199 dB with resonant frequency at 2.390 GHz, while the Location C only shifted the minor value to 2.394 GHz with only - 25.13 dB.


2015 ◽  
Vol 781 ◽  
pp. 73-76 ◽  
Author(s):  
H. Nornikman ◽  
Muhammad Ramlee Kamarudin ◽  
Badrul Hisham Ahmad ◽  
Mohamad Zoinol Abidin Abd Aziz

The paper investigates the effect of Minkowski Island split ring resonator (MI-SRR) on the microstrip fractal patch antenna. Firstly, a basic Minkowski Island had been simulated in the CST Microwave Studio. Then, the addition of several sizes of the Minkowski Island split ring resonator on the substrate had been generated tri-band resonant frequencies. The optimal result of this tri-band antenna 2.394 GHz, 3.528 GHz and 5.257 GHz with a gain of 0.874 dB, 1.41 dB and 2.94 dB and the reflection coefficient magnitudes of - 21.945 dB, - 17.154 dB and – 16.536 dB. The reflection coefficient magnitudes of the simulation and fabricated antenna also had been compared. The target application for this antenna is for WLAN and WiMAX.


Author(s):  
Syamimi Mohd Norzeli ◽  
Ismarani Ismail ◽  
Norashidah Md Din ◽  
Mohd Tarmizi Ali ◽  
Ali Abd Almisreb ◽  
...  

<span>This paper presents a compact microstrip ultra-high frequency (UHF) reader patch antenna with complementary split ring resonator (CSRR) for radio frequency identification (RFID). The total size of the antenna is 208 × 208 × 1.6 mm<sup>3</sup>. The proposed antenna is designed, fabricated and measured in order to verify the proposed concept. The characterization for radiation parameters, like return loss, radiation pattern and antenna gain have been done experimentally. The proposed antenna is operated at 921 MHz for and achieved a gain of 8.285 dBi. All simulations in this work have been carried out by means of the commercial computer simulation technology (CST) software. In compare to the simulated results, the measured outcomes are promised.</span>


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


Sign in / Sign up

Export Citation Format

Share Document