Modified Minkowski Fractal Multiband Antenna with Circular-Shaped Split-Ring Resonator for Wireless Applications

Measurement ◽  
2021 ◽  
pp. 109766
Author(s):  
Rajkumar Rangasamy ◽  
Dileepan Dhanasekaran ◽  
Chinmay Chakraborty ◽  
Suresh Ponnan
2013 ◽  
Vol 55 (4) ◽  
pp. 814-816 ◽  
Author(s):  
D. Laila ◽  
R. Sujith ◽  
V.A. Shameena ◽  
C.M. Nijas ◽  
V.P. Sarin ◽  
...  

2013 ◽  
Vol 39 ◽  
pp. 25-36 ◽  
Author(s):  
Ali Sadeq Abdulhadi Jalal ◽  
Alyani Ismail ◽  
Adam Reda Hasan Alhawari ◽  
Mohd Fadlee A. Rasid ◽  
Nor Kamariah Noordin ◽  
...  

2021 ◽  
Author(s):  
Shantha Selvakumari R ◽  
Vishnoo Priyaa P

Abstract This paper presents the design and simulation of patch antenna loaded with metamaterial called Complementary Split Ring Resonator (CSRR) with increased gain and bandwidth suitable for wireless applications such as satellite, TV and radar applications. FR4 substrate with dielectric constant (εr ) of 4.4 is used. The radiating patch consists of CSRR structure fed by microstrip line to achieve triple(C, X, Ku ) band characteristics. The proposed antenna is designed and simulated using Ansys High Frequency Structural Simulator (HFSS). The proposed antenna with 4 rings having a resonant frequency of 7.662, 9.8510, 10.9455, 11.8410, 12.7365 and 13.7315GHz and the bandwidth of 230, 1090, 640, 580, 620 and 2000MHz respectively. The proposed antenna with 6 rings also having a resonant frequency of 7.7615, 9.9525, 11.0450, 11.9405 and13.7315GHz and bandwidth of 160, 1130, 490, 1360 and 1480MHz are achieved. The proposed antenna is analyzed in terms of return loss, VSWR, gain and bandwidth. The electric field and surface current distribution were observed for the proposed antenna having 6 rings.


2021 ◽  
Vol 10 (5) ◽  
pp. 2716-2723
Author(s):  
Basavalinga Swamy ◽  
C. M. Tavade ◽  
Kishan Singh

The present wireless applications demand a compact, multi-operated, and stable radiation pattern antenna with good gain and impedance matching performance. To accomplish this requirement. In this paper, we propose a compact metamaterial structure loaded quad band antenna. The structural specifications/layout of the antenna consists of a circular ring monopole fed by a microstrip line. The ground part of the antenna is loaded with a metamaterial rectangular split-ring resonator (RSRR), an L-shaped slot, and two horizontally placed rectangular slots parallel to each other. No external matching circuit is utilized and impedance matching is solely controlled by the placement of slots. The antenna shows operation at 2.1 GHz (2.01-2.24 GHz, a bandwidth of 230 MHz (WLAN)), 4.5 GHz (4.35-4.66 GHz, a bandwidth of 310 MHz (C-band)), 5.5 GHz (5.37-5.77 GHz bandwidth of 400 MHz (WiMAX)), and 7.2 GHz (7.08-7.33 GHz, a bandwidth of 250 MHz (satellite band)). The antenna exhibits good gain and stable radiation pattern in both the plane and thus can be utilized for aforementioned applications.


Sign in / Sign up

Export Citation Format

Share Document