HIGH TEMPERATURE SOLID-CATALYZED IN-SITU TRANSESTERIFICATION FOR BIODIESEL PRODUCTION

2017 ◽  
Vol 79 (5-3) ◽  
Author(s):  
Nur Syakirah Talha ◽  
Sarina Sulaiman ◽  
Azlin Suhaida Azmi

In-situ transesterification method is a simplified method for biodiesel production where the oil was simultaneously extracted and transesterified into alkyl ester in-situ in one single process. This process combines the steps of lipid (oil) extraction and transesterification. The alcohol used was methanol as it is widely available and economically feasible. In this study, in situ transesterification was conducted using solid coconut waste and a novel heterogeneous catalyst synthesized from eggshells and solid coconut waste by calcination. Reaction temperature, catalyst loading, and methanol to solid ratio were varied from 70 to 120˚C, 0.5 to 10.5 wt %, and 8:1 to 12:1 respectively. Meanwhile, reaction time was fixed to 3 hrs. Heterogeneous catalyst can help to reduce the steps in separation and purification of the product. Moreover, utilizing waste in the production can lower the production cost as well as help to save and clean the environment. The highest biodiesel yield was observed at the condition of 95˚C, 0.5 wt % catalyst, and 10:1 methanol to solid ratio.

2018 ◽  
Vol 192 ◽  
pp. 03006
Author(s):  
Jakkrapong Jitjamnong

The purpose of this research was to investigate the catalytic activity of Ba loading on calcium oxide (CaO) catalyst by varying the amount of barium added during the synthesis: 5-15 wt%. The waste egg shells were utilized as a CaO heterogeneous catalyst by calcined at 900 °C for 2 h. The Ba/CaO catalysts were prepared by impregnation method and were used as a catalyst in transesterification reaction of canola oil via microwave irradiation under microwave power 300 W. The characterization of catalyst and FAME composition of biodiesel were determined by X-ray fluorescence (XRF), scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), and gas chromatography (GC-FID). The conditions of biodiesel production were operated at 60 °C, 3 wt% of catalyst loading, 9:1 methanol-to-canola oil ratio, and microwave irradiation power was 300W for 2 min. The experimental results found that, the waste egg shells consist mainly of CaCO3, which was decomposed to CaO more than 88 wt% after cacination step. The 15 wt% Ba/CaO catalysts exhibited the best catalytic performance with the FAME conversion higher than 97.68%.


2016 ◽  
Vol 49 ◽  
pp. 212-220 ◽  
Author(s):  
Juanjuan Qi ◽  
Fenfen Zhu ◽  
Xiang Wei ◽  
Luyao Zhao ◽  
Yiqun Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document