URBAN HEAT ISLAND MITIGATION USING GREEN ROOF APPROACH

2018 ◽  
Vol 80 (3) ◽  
Author(s):  
Johan Sohaili ◽  
Leong Kar Yan ◽  
Shantha Kumari Muniyandi ◽  
Siti Suhaila Mohamad

In urban environments, vegetation has largely been replaced by impervious and often dark surfaces. These conditions contribute to an Urban Heat Island (UHI) effect. This phenomenon is demonstrated in many cities and produced effects such as higher atmospheric temperatures, intensive precipitation, excessive solar radiation and increasing air pollution. Therefore, reducing the surface temperature of roofs in a building may play an important role in improving the conventional roof surfaces with green roofs that offer much lower temperatures throughout a day to reach their thermal performance and reduce the absorption of solar radiation. Thus, this study is focused on determining the effectiveness of the existing green roof in reducing the ambient temperature and humidity of the air above it by comparison with conventional open roof top without vegetation. This study also aims to evaluate the potential of green roof to reduce the air pollutants in improving air quality in urban cities. As a result, by adopting green roof system, it has reduced temperature during the hottest hour in a day at 1230 hour (hr) by 4.3°C when compared to open roof. Green roof has also recorded higher percentage of humidity compared to open roof. Most importantly, it was proven through this study that green roof has the potential of absorbing pollutants in the air by reducing the concentrations of Sulphur dioxide (SO2), Ammonia (NH3), Nitrogen dioxide (NO2), Ozone (O3) and Carbon monoxide (CO) compared to open roof. Thus, green roofs can be considered to be one of the effective methods to mitigate UHI effects in urban cities.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jihui Yuan ◽  
Kazuo Emura ◽  
Craig Farnham

Research on urban heat island (UHI) mitigation has been carried out globally. Several strategies have been proposed or developed to mitigate UHI, including highly reflective (HR) envelopes of buildings, green roofs, urban vegetation, shading, heat sinks, and air-conditioning efficiency. Among these techniques, HR envelopes have been extensively studied as an effective method to mitigate the UHI effect by reducing energy consumption. However, because most of HR materials are diffusive, HR envelopes applied to vertical surfaces can reflect both onto roads and nearby buildings. Additionally, HR roofs cannot reflect all incoming solar radiation to the sky if there are high buildings around it. Thus, HR materials applied as building envelopes have a limited effect against the solar contribution to the UHI. In order to solve this problem, retroreflective (RR) materials, which reflect the solar radiation back towards the source, have been studied and developed to be applied as building envelopes instead of HR materials. This paper summarizes several previous researches on HR envelopes and cool roofs and summarizes several current researches on RR materials. The potential for application of RR envelopes in cities is proposed with consideration of economic and environmental factors.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 157 ◽  
Author(s):  
Manfred Köhler ◽  
Daniel Kaiser

Approximately 10 km2 of new green roofs are built in Germany every year. About 85% of these are Extensive Green Roofs (EGR). An EGR with several research features was installed on new buildings belonging to the University of Applied Sciences Neubrandenburg in 1999. The results of the almost 20-year permanent survey of the climate effects of the green roof in contrast to gravel roofs are presented here. High-quality sensors, similar to those used by official weather stations, are in use, and data is collected every 10 s and aggregated to hourly values which enable comparisons to official measurements made by the DWD in Neubrandenburg and Berlin. The results show the typical urban heat island effect (UHI) and the mitigation effect of EGR. Whilst the temperature increased over the years due to the urban heat island effect, the temperature within the growing media in the green roof remained constant. The EGR has a stabilization effect of 1.5 K. This is good news for all those seeking a UHI mitigation solution for city centers. In a best-case scenario, the green roof potential of cities in Germany is between 3 and 8%. A value of 50% can be achieved for all buildings; roofs represent about ¼ of urban surfaces, and the cooling effect of 1.5 K in 20 years is a reasonable contribution to cooling cities and achieving environmental goals by greening urban surfaces.


2019 ◽  
Vol 125 ◽  
pp. 07018
Author(s):  
Dwi Nur Luthfiyyah ◽  
Retno Widjajanti

Climate change and urbanization are the main problems of the city that have caused the Urban Heat Island effect (UHI). A green roof that utilizes the building roof as a green space can overcome the UHI effects. Green roof is also an efficient solution in the procurement of green spaces in crowded cities. In 2019, Semarang City Mayor released regulation No. 24 of 2019 concerning Green Building that makes the focus of Semarang City development is to improve the urban environment. This research area is in two road corridors of Semarang City, Pandanaran and Pemuda roads. This study aims to examine the application of green roofs in these two corridors. Several identifications were carried out, first identifying building characteristics, second identifying opportunities for applying green roof, and third identifying building area capable of applying green roof. Primary data collection through field observations and satellite imagery as well as through questionnaires to the community who conduct activities in two roads corridors. The results of this study are the total roof area of 96,484m2 from 30 buildings on Pandanaran road and 23 buildings on Pemuda road that can become new green spaces to overcome Urban Heat Island effects.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 123 ◽  
Author(s):  
Guglielmina Mutani ◽  
Valeria Todeschi

There is growing attention to the use of greenery in urban areas, in various forms and functions, as an instrument to reduce the impact of human activities on the urban environment. The aim of this study has been to investigate the use of green roofs as a strategy to reduce the urban heat island effect and to improve the thermal comfort of indoor and outdoor environments. The effects of the built-up environment, the presence of vegetation and green roofs, and the urban morphology of the city of Turin (Italy) have been assessed considering the land surface temperature distribution. This analysis has considered all the information recorded by the local weather stations and satellite images, and compares it with the geometrical and typological characteristics of the city in order to find correlations that confirm that greenery and vegetation improve the livability of an urban context. The results demonstrate that the land-surface temperature, and therefore the air temperature, tend to decrease as the green areas increase. This trend depends on the type of urban context. Based on the results of a green-roofs investigation of Turin, the existing and potential green roofs are respectively almost 300 (257,380 m2) and 15,450 (6,787,929 m2). Based on potential assessment, a strategy of priority was established according to the characteristics of building, to the presence of empty spaces, and to the identification of critical areas, in which the thermal comfort conditions are poor with low vegetation. This approach can be useful to help stakeholders, urban planners, and policy makers to effectively mitigate the urban heat island (UHI), improve the livability of the city, reduce greenhouse gas (GHG) emissions and gain thermal comfort conditions, and to identify policies and incentives to promote green roofs.


2020 ◽  
Vol 12 (5) ◽  
pp. 2001 ◽  
Author(s):  
Chih-Hong Huang ◽  
Hsin-Hua Tsai ◽  
Hung-chen Chen

Urbanization has influenced the distribution of heat in urban environments. The mutual influence between weather factors and urban forms created by dense buildings intensify human perception of the deteriorating thermal environment in subtropics. Past studies have used real-world measurements and theoretical simulations to understand the relationship between climate factors and the urban heat island effect. However, few studies have examined how weather factors and urban forms are connected to the thermal environment. To understand the influence of various weather factors on urban thermal environments in various urban forms, this study applied structural equation modeling to assumptions of linear relationships and used quantitative statistical analysis of weather data as well as structural conversion of this data to establish the structural relationships between variables. Our objective was to examine the relationships among urban forms, weather factors, and thermal comfort. Our results indicate that weather factors do indeed exert influence on thermal comfort in urban environments. In addition, the thermal comfort of urban thermal environments varies with location and building density. In hot and humid environments in the subtropics, humidity and wind speed have an even more profound impact on the thermal environment. Apparent temperature can be used to examine differences in thermal comfort and urban forms. This study also proved that an urban wind field can effectively mitigate the urban heat island effect. Ventilation driven by wind and thermal buoyancy can dissipate heat islands and take the heat away from urban areas.


Author(s):  
D. Gerçek ◽  
İ. T. Güven ◽  
İ. Ç. Oktay

Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI) effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. <br><br> Urban Heat Island (UHI) effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. <br><br> In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. <br><br> Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI), imperviousness (NDISI), albedo, solar insolation, Sky View Factor (SVF), building envelope, distance to sea, and traffic space density. These parameters that cause variation in intra-city temperatures were evaluated for their relationship with different grades of UHIs. Zonal statistics of UHI classes and variations in average value of parameters were interpreted. The outcomes that highlight local temperature peaks are proposed to the attention of the decision makers for mitigation of Urban Heat Island effect in the city at local and neighbourhood scale.


Sign in / Sign up

Export Citation Format

Share Document