scholarly journals Development of radionuclide dispersion modeling software based on Gaussian Plume model

MATEMATIKA ◽  
2017 ◽  
Vol 33 (2) ◽  
pp. 149
Author(s):  
Shazmeen Daniar Shamsuddin ◽  
Nurlyana Omar ◽  
Meng Hock Koh

It has come to attention that Malaysia have been aiming to build its own nuclear power plant (NPP) for electricity generation in 2030 to diversify the national energy supply and resources. As part of the regulation to build a NPP, environmental risk assessment analysis which includes the atmospheric dispersion assessment has to be performed as required by the Malaysian Atomic Energy Licensing Board (AELB) prior to the commissioning process. The assessment is to investigate the dispersion of radioactive effluent from the NPP in the event of nuclear accident. This article will focus on current development of locally developed atmospheric dispersion modeling code based on Gaussian Plume model. The code is written in Fortran computer language and has been benchmarked to a readily available HotSpot software. The radionuclide release rate entering the Gaussian equation is approximated to the value found in the Fukushima NPP accident in 2011. Meteorological data of Mersing District, Johor of year 2013 is utilized for the calculations. The results show that the dispersion of radionuclide effluent can potentially affect areas around Johor Bahru district, Singapore and some parts of Riau when the wind direction blows from the North-northeast direction. The results from our code was found to be in good agreement with the one obtained from HotSpot, with less than 1% discrepancy between the two.

Author(s):  
Ye Yang ◽  
Bo Cao ◽  
Yixue Chen

The Chernobyl accident and Fukushima 1 Nuclear Power Plant accident are the most serious accidents in the history of the nuclear technology and industry. A large amount of radioactive materials from nuclear power plant were released, leading to huge damage and long-term effect on the environment as well as the human health neighbor to the plant. Therefore, simulating the transport and transformation of radionuclides in the atmosphere is significant for decision makers to take steps at all level. Now, many different dispersion models are widely applied and used to simulate the transport and transformation of radionuclide such as Gaussian model, Lagrangian model and Eulerian model. Though the Eulerian or Lagrangian models have several advantages, such as high spatial resolution, fully 3D descriptions of the meteorological, the simple Gaussian plume model is still widely chosen because of its higher accuracy and faster calculation. In this study, the atmospheric dispersion of leaked radioactive material during nuclear accident is simulated by using Gaussian plume model. The relative concentration distribution of the radionuclides and the trajectory of the distribution centrode are obtained in taking account of different geographical environments, wind direction, wind velocity, and stability category. These results can provide a favorable evidence for the management of nuclear accident emergency.


2019 ◽  
Vol 48 (9) ◽  
pp. 2021-2028
Author(s):  
Jeyleenny Ranty Janson ◽  
Siti Nur Ain Binti Sulaiman ◽  
Suhaimi Bin Kassim ◽  
Nur Syahirah Binti Muszakhir ◽  
Faizal Mohamed ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sümer Şahin ◽  
Muhammad Ali

Emergency planning zones (PAZ and UPZ) around the Karachi-2 and Karachi-3 nuclear power plants (K-2/K-3 NPPs) have been realistically determined by employing Gaussian puff model and Gaussian plume model together for atmospheric transport, diffusion, and deposition of radioactive material using onsite and regional data related to meteorology, topography, and land-use along with latest IAEA Post-Fukushima Guidelines. The analysis work has been carried out using U.S.NRC computer code RASCAL 4.2. The assumed environmental radioactive releases provide the sound theoretical and practical bases for the estimation of emergency planning zones covering most expected scenario of severe accident and most recent multiunit Fukushima Accident. Sheltering could be used as protective action for longer period of about 04 days. The area about 3 km of K-2/K-3 NPPs site should be evacuated and an iodine thyroid blocking agent should be taken before release up to about 14 km to prevent severe deterministic effects. Stochastic effects may be avoided or minimized by evacuating the area within about 8 km of the K-2/K-3 NPPs site. Protective actions may become more effective and cost beneficial by using current methodology as Gaussian puff model realistically represents atmospheric transport, dispersion, and disposition processes in contrast to straight-line Gaussian plume model explicitly in study area. The estimated PAZ and UPZ were found 3 km and 8 km, respectively, around K-2/K-3 NPPs which are in well agreement with IAEA Post-Fukushima Study. Therefore, current study results could be used in the establishment of emergency planning zones around K-2/K-3 NPPs.


2019 ◽  
Vol 15 (4) ◽  
pp. 532-536
Author(s):  
Nurlyana Omar ◽  
Meng-Hock Koh ◽  
Suhairul Hashim

Malaysia has considered for some time to adopt nuclear power to cater to the increasing demand of electricity following other developed Asian countries such as Japan, Korea, and China. In implementing a nuclear power plant, strict regulations and guidelines by the International Atomic Energy Agency (IAEA) and International Commission on Radiological Protection (ICRP) must be fulfilled before any construction license is given for a new nuclear power program. One of the assessments include the estimation of potential radiological risks to both humans and environment from routine and accidental release of radioactive effluent from the nuclear power plant (NPP). In this work, simulations of radionuclide dispersion from a hypothetical NPP site in Mersing, Johor will be presented. The simulation was performed based on the Lagrangian atmospheric dispersion model using the HYSPLIT software. The radioactive effluent release rate was approximated to the value found in the Fukushima Dai-ichi accident in 2011. Meteorological data of 2017 were utilized in this study. Simulation results showed that the dispersion of radioactive effluent from the hypothetical NPP can potentially affect areas around Johor Bahru district, Singapore, and even some areas in Indonesia.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Bo Cao ◽  
Junxiao Zheng ◽  
Yixue Chen

Atmospheric dispersion modeling and radiation dose calculations have been performed for a hypothetical AP1000 SGTR accident by HotSpot code 3.03. TEDE, the respiratory time-integrated air concentration, and the ground deposition are calculated for various atmospheric stability classes, Pasquill stability categories A–F with site-specific averaged meteorological conditions. The results indicate that the maximum plume centerline ground deposition value of1.2E+2 kBq/m2occurred at about 1.4 km and the maximum TEDE value of1.41E-05 Sv occurred at 1.4 km from the reactor. It is still far below the annual regulatory limits of 1 mSv for the public as set in IAEA Safety Report Series number 115. The released radionuclides might be transported to long distances but will not have any harmful effect on the public.


Sign in / Sign up

Export Citation Format

Share Document