scholarly journals Emergency Planning Zones Estimation for Karachi-2 and Karachi-3 Nuclear Power Plants using Gaussian Puff Model

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sümer Şahin ◽  
Muhammad Ali

Emergency planning zones (PAZ and UPZ) around the Karachi-2 and Karachi-3 nuclear power plants (K-2/K-3 NPPs) have been realistically determined by employing Gaussian puff model and Gaussian plume model together for atmospheric transport, diffusion, and deposition of radioactive material using onsite and regional data related to meteorology, topography, and land-use along with latest IAEA Post-Fukushima Guidelines. The analysis work has been carried out using U.S.NRC computer code RASCAL 4.2. The assumed environmental radioactive releases provide the sound theoretical and practical bases for the estimation of emergency planning zones covering most expected scenario of severe accident and most recent multiunit Fukushima Accident. Sheltering could be used as protective action for longer period of about 04 days. The area about 3 km of K-2/K-3 NPPs site should be evacuated and an iodine thyroid blocking agent should be taken before release up to about 14 km to prevent severe deterministic effects. Stochastic effects may be avoided or minimized by evacuating the area within about 8 km of the K-2/K-3 NPPs site. Protective actions may become more effective and cost beneficial by using current methodology as Gaussian puff model realistically represents atmospheric transport, dispersion, and disposition processes in contrast to straight-line Gaussian plume model explicitly in study area. The estimated PAZ and UPZ were found 3 km and 8 km, respectively, around K-2/K-3 NPPs which are in well agreement with IAEA Post-Fukushima Study. Therefore, current study results could be used in the establishment of emergency planning zones around K-2/K-3 NPPs.

2006 ◽  
Vol 64 (4) ◽  
pp. 448-454 ◽  
Author(s):  
Jay Wu ◽  
Yung-Muh Yang ◽  
Ing-Jane Chen ◽  
Huan-Tong Chen ◽  
Keh-Shih Chuang

MATEMATIKA ◽  
2017 ◽  
Vol 33 (2) ◽  
pp. 149
Author(s):  
Shazmeen Daniar Shamsuddin ◽  
Nurlyana Omar ◽  
Meng Hock Koh

It has come to attention that Malaysia have been aiming to build its own nuclear power plant (NPP) for electricity generation in 2030 to diversify the national energy supply and resources. As part of the regulation to build a NPP, environmental risk assessment analysis which includes the atmospheric dispersion assessment has to be performed as required by the Malaysian Atomic Energy Licensing Board (AELB) prior to the commissioning process. The assessment is to investigate the dispersion of radioactive effluent from the NPP in the event of nuclear accident. This article will focus on current development of locally developed atmospheric dispersion modeling code based on Gaussian Plume model. The code is written in Fortran computer language and has been benchmarked to a readily available HotSpot software. The radionuclide release rate entering the Gaussian equation is approximated to the value found in the Fukushima NPP accident in 2011. Meteorological data of Mersing District, Johor of year 2013 is utilized for the calculations. The results show that the dispersion of radionuclide effluent can potentially affect areas around Johor Bahru district, Singapore and some parts of Riau when the wind direction blows from the North-northeast direction. The results from our code was found to be in good agreement with the one obtained from HotSpot, with less than 1% discrepancy between the two.


Author(s):  
Amesh A. Adalja ◽  
Tara Kirk Sell ◽  
Sanjana J. Ravi ◽  
Katie Minton ◽  
Ryan Morhard

AbstractEach of the nuclear power plants in the US is encircled by an Emergency Planning Zone (EPZ). Within each EPZ, government officials, utility professionals, emergency managers, and public health practitioners collectively conduct extensive planning, exercises, and outreach to better protect their communities in the event of a nuclear accident. Our objective was to conduct a cross-sectional study of off-site public health preparedness within EPZs to better understand the dynamics of nuclear preparedness and uncover lessons for all-hazards preparedness.Using a qualitative, interview-based method, we consulted 120 county emergency managers, state health preparedness officers, state radiation health officials, and industry officials from 17 EPZs in ten different states.Interviewees reflected that EPZ emergency preparedness is generally robust, results from strong public-private partnership between nuclear plants and emergency management agencies, and enhances all-hazard preparedness. However, there exist a few areas which merit further study and improvement. These areas include cross-state coordination, digital public communication, and optimizing the level of public education within EPZs.This first-of-its-kind study provides a cross-sectional snapshot of emergency preparedness in the 10-mile EPZ surrounding nuclear power plants.


2007 ◽  
Vol 92 (Suppl 1) ◽  
pp. S18-S26 ◽  
Author(s):  
James Blando ◽  
Corwin Robertson ◽  
Katina Pearl ◽  
Carline Dixon ◽  
Martin Valcin ◽  
...  

Author(s):  
Wang Xuan ◽  
Du Fenglei ◽  
Sun Dawei ◽  
Tang Te

Determination of the SMR emergency planning zone (EPZ) is one of the important external constraint factor of its marketing and application, which means that it is very important to formulate appropriate classification criteria and establish proper size range. In China, due to the requirement of “Criteria for emergency planning and preparedness for nuclear power plants: Part 1, The dividing of emergency planning zone.” (GB/T 17680.1-2008), for PWR nuclear power plant, its external plume EPZ should be within 7km–10km, and its internal plume EPZ should be within 3km∼5km. However, the scope of the standard for the emergency planning area is currently limited to conventional nuclear power plants, and for the current SMR, its emergency planning size is not included. In this paper, we will analyze the classification method of SMR EPZ based on the traditional Nuclear Power Plants feedback experience, including selection of source term, accident cutoff probability, determination method of the plume EPZ and the ingestion EPZ. Three typical nuclear power plant sites in China are chosen as CAP200 case study sites, including two inland nuclear power plant sites and one coastal site. The three sites can represent most of the meteorological and terrain characters of China nuclear power plants. According to the CAP200 source term and meteorological data of the sites, MACCS2 computer program is used to calculate the severe accidents consequence. Conclusions show that for the CAP200 SMR, the accident cutoff probability can be 1.0E−08 to 1.0E−07 per reactor per year, and its project dose exceeding probability in the three sites boundary is far below 30%, which directs that for CAP200 SMR, its plume and ingestion emergence planning zone is limited to the on-site area, and its off-site emergency response can be simplified.


Sadhana ◽  
2013 ◽  
Vol 38 (5) ◽  
pp. 925-943 ◽  
Author(s):  
P K VIJAYAN ◽  
M T KAMBLE ◽  
A K NAYAK ◽  
K K VAZE ◽  
R K SINHA

2020 ◽  
Vol 18 ◽  
pp. 86-104
Author(s):  
M. M. Таlerko ◽  
◽  
Т. D. Lev ◽  
I. V. Коvalets ◽  
Yu. V. Yatsenko

In April 2020, the largest forest fire occurred in the Chornobyl Exclusion zone in its history. The results of modeling the atmospheric transport of radioactive aerosols raised into the atmosphere as a result of fires in forest and grass areas in the Exclusion zone, as well as in radioactively contaminated forests outside it in Kyiv and Zhytomyr regions are presented in the paper. To assess the consequences of forest fires, a set of models of lifting, atmospheric transport and deposition of radionuclides on the underlying surface LEDI, developed at the Institute for Safety Problems of Nuclear Power Plants of the National Academy of Sciences of Ukraine, was used. Calculations of the dynamics of the 137Cs activity concentration field in the surface air on a regional scale (in Ukraine) and on a local scale (within the Exclusion zone) were performed. According to the simulation results, the maximum values of the 137Cs activity in the surface air of Kyiv in some periods during April 4−20 could reach 2−4 mBq/m3, and the integral value of 137Cs activity in the air of Kyiv for the whole period was about 450 mBq⋅s/m3. The obtained results are generally consistent with the data of measurements of radioactive contamination of the nearground air in Kyiv and areas of the nuclear power plants in Ukraine. The analysis of the consistency of the simulation results with the data of measurements of the 137Cs activity concentration in the air in the Exclusion zone was performed. The main ways to improve the methodology for assessing the consequences of forest fires by modeling the atmospheric transport of radionuclides are identified.


Author(s):  
Mengxi Wang ◽  
Na Xue ◽  
Xinjian Liu

Food contamination has aroused public concern since Fukushima accident. As emergency preparedness is often viewed as an important approach to protect staff working on site and public around the site, ingestion emergency planning zone (EPZ) is applied to protect public from the exposure of contaminated food. Ingestion EPZ is one of the technical foundations for nuclear emergency preparedness, which will be influenced by design features of plant and characteristics of the site. This paper is devoted to the research on the optimization of ingestion EPZ sizing from the view of the atmospheric dispersion model and the food chain model, which are crucial points for the sizing of ingestion EPZ. Compared to the traditional straight-line Gaussian plume model with a quite conservative assumption that plume segments always transport in the downwind direction, the Lagrangian Gaussian puff model considers the swing of wind direction over time, which makes the simulation more realistic. With the results of radionuclide concentrations evaluated by the dispersion model, the transportation of the radionuclides in food is simulated by the food chain model. The traditional food chain model is essentially a static model with no consideration that food contamination level has a strong dependence on the accident date, which may overstate the risk from nuclear plant accidents and result in unfounded fear of public. The dynamic food chain model, which takes daily changes of plant biomass, or livestock feeding periods in consideration, has been developed to estimate radionuclide concentrations in different foodstuffs. On basis of the study of the dispersion models and food chain models above, we evaluate the ingestion EPZ size of Tianwan NPP by choosing the comparatively realistic ones from them. In the scenario considered in this paper, the simulation domain of Tianwan NPP within 80km-range and hourly time-step is applied, and meteorological conditions are carefully set according to observation data in recent years. Results show that there is significant margin and conservatism in the traditional ingestion EPZ sizing. Radionuclide concentrations predicted by the Lagrangian Gaussian puff model is almost an order of magnitude lower than the Gaussian plume model. Moreover, the dynamic food chain model considers the seasonal effect that simulation results of radionuclide concentrations in foodstuffs are significantly higher in summer than in winter, which helps to make a more realistic consideration of ingestion pathway. This research gives an example of the application of new models for the optimization of ingestion EPZ sizing, which may contribute to strengthen public confidence in nuclear safety and emergency preparedness.


Sign in / Sign up

Export Citation Format

Share Document