scholarly journals The independence polynomial of n-th central graph of dihedral groups

Author(s):  
Nabilah Najmuddin ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian ◽  
Hamisan Rahmat

An independent set of a graph is a set of pairwise non-adjacent vertices while the independence number is the maximum cardinality of an independent set in the graph. The independence polynomial of a graph is defined as a polynomial in which the coefficient is the number of the independent set in the graph.  Meanwhile, a graph of a group G is called n-th central if the vertices are elements of G and two distinct vertices are adjacent if they are elements in the n-th term of the upper central series of G. In this research, the independence polynomial of the n-th central graph is found for some dihedral groups.

2017 ◽  
Vol 09 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Nacéra Meddah ◽  
Mustapha Chellali

A Roman dominating function (RDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the condition that every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] of [Formula: see text] for which [Formula: see text]. The weight of a RDF is the sum [Formula: see text], and the minimum weight of a RDF [Formula: see text] is the Roman domination number [Formula: see text]. A subset [Formula: see text] of [Formula: see text] is a [Formula: see text]-independent set of [Formula: see text] if every vertex of [Formula: see text] has at most one neighbor in [Formula: see text] The maximum cardinality of a [Formula: see text]-independent set of [Formula: see text] is the [Formula: see text]-independence number [Formula: see text] Both parameters are incomparable in general, however, we show that if [Formula: see text] is a tree, then [Formula: see text]. Moreover, all extremal trees attaining equality are characterized.


2018 ◽  
Vol 10 (05) ◽  
pp. 1850069
Author(s):  
Nader Jafari Rad ◽  
Elahe Sharifi

The independence number of a graph [Formula: see text], denoted by [Formula: see text], is the maximum cardinality of an independent set of vertices in [Formula: see text]. [Henning and Löwenstein An improved lower bound on the independence number of a graph, Discrete Applied Mathematics  179 (2014) 120–128.] proved that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] does not belong to a specific family of graphs, then [Formula: see text]. In this paper, we strengthen the above bound for connected graphs with maximum degree at least three that have a non-cut-vertex of maximum degree. We show that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] has a non-cut-vertex of maximum degree then [Formula: see text], where [Formula: see text] is the maximum degree of the vertices of [Formula: see text]. We also characterize all connected graphs [Formula: see text] of order [Formula: see text] and size [Formula: see text] that have a non-cut-vertex of maximum degree and [Formula: see text].


2015 ◽  
Vol 07 (03) ◽  
pp. 1550039
Author(s):  
I. Sahul Hamid ◽  
R. Gnanaprakasam ◽  
M. Fatima Mary

A set S ⊆ V(G) is an independent set if no two vertices of S are adjacent. An independent set S such that 〈V - S〉 is connected is called an outer-connected independent set(oci-set). An oci-set is maximal if it is not a proper subset of any oci-set. The minimum and maximum cardinality of a maximal oci-set are called respectively the outer-connected independence number and the upper outer-connected independence number. This paper initiates a study of these parameters.


2020 ◽  
Vol 16 (1) ◽  
pp. 115-120
Author(s):  
Aliyu Suleiman ◽  
Aliyu Ibrahim Kiri

Set of vertices not joined by an edge in a graph is called the independent set of the graph. The independence polynomial of a graph is a polynomial whose coefficient is the number of independent sets in the graph. In this research, we introduce and investigate the inverse commuting graph of dihedral groups (D2N) denoted by GIC. It is a graph whose vertex set consists of the non-central elements of the group and for distinct  x,y, E D2N, x and y are adjacent if and only if xy = yx = 1  where 1 is the identity element. The independence polynomials of the inverse commuting graph for dihedral groups are also computed. A formula for obtaining such polynomials without getting the independent sets is also found, which was used to compute for dihedral groups of order 18 up to 32.


2018 ◽  
Vol 14 ◽  
pp. 434-438
Author(s):  
Nabilah Najmuddin ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian ◽  
Hamisan Rahmat

The independence and clique polynomial are two types of graph polynomial that store combinatorial information of a graph. The independence polynomial of a graph is the polynomial in which its coefficients are the number of independent sets in the graph. The independent set of a graph is a set of vertices that are not adjacent. The clique polynomial of a graph is the polynomial in which its coefficients are the number of cliques in the graph. The clique of a graph is a set of vertices that are adjacent. Meanwhile, a graph of group G is called conjugacy class graph if the vertices are non-central conjugacy classes of G and two distinct vertices are connected if and only if their class cardinalities are not coprime. The independence and clique polynomial of the conjugacy class graph of a group G can be obtained by considering the polynomials of complete graph or polynomials of union of some graphs. In this research, the independence and clique polynomials of the conjugacy class graph of dihedral groups of order 2n are determined based on three cases namely when n is odd, when n and n/2 are even, and when n is even and n/2 is odd. For each case, the results of the independence polynomials are of degree two, one and two, and the results of the clique polynomials are of degree (n-1)/2, (n+2)/2 and (n-2)/2, respectively.


10.37236/3601 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Christian Löwenstein ◽  
Justin Southey ◽  
Anders Yeo

The independence number of a graph $G$, denoted $\alpha(G)$, is the maximum cardinality of an independent set of vertices in $G$. The independence number is one of the most fundamental and well-studied graph parameters. In this paper, we strengthen a result of Fajtlowicz [Combinatorica 4 (1984), 35-38] on the independence of a graph given its maximum degree and maximum clique size. As a consequence of our result we give bounds on the independence number and transversal number of $6$-uniform hypergraphs with maximum degree three. This gives support for a conjecture due to Tuza and Vestergaard [Discussiones Math. Graph Theory 22 (2002), 199-210] that if $H$ is a $3$-regular $6$-uniform hypergraph of order $n$, then $\tau(H) \le n/4$.


10.37236/1798 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip Matchett

A graph $G$ is well-covered if every maximal independent set has the same cardinality. Let $s_k$ denote the number of independent sets of cardinality $k$, and define the independence polynomial of $G$ to be $S(G,z) = \sum s_kz^k$. This paper develops a new graph theoretic operation called power magnification that preserves well-coveredness and has the effect of multiplying an independence polynomial by $z^c$ where $c$ is a positive integer. We will apply power magnification to the recent Roller-Coaster Conjecture of Michael and Traves, proving in our main theorem that for sufficiently large independence number $\alpha$, it is possible to find well-covered graphs with the last $(.17)\alpha$ terms of the independence sequence in any given linear order. Also, we will give a simple proof of a result due to Alavi, Malde, Schwenk, and Erdős on possible linear orderings of the independence sequence of not-necessarily well-covered graphs, and we will prove the Roller-Coaster Conjecture in full for independence number $\alpha \leq 11$. Finally, we will develop two new graph operations that preserve well-coveredness and have interesting effects on the independence polynomial.


10.37236/6160 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

For $k \ge 2$, let $H$ be a $k$-uniform hypergraph on $n$ vertices and $m$ edges. Let $S$ be a set of vertices in a hypergraph $H$. The set $S$ is a transversal if $S$ intersects every edge of $H$, while the set $S$ is strongly independent if no two vertices in $S$ belong to a common edge. The transversal number, $\tau(H)$, of $H$ is the minimum cardinality of a transversal in $H$, and the strong independence number of $H$, $\alpha(H)$, is the maximum cardinality of a strongly independent set in $H$. The hypergraph $H$ is linear if every two distinct edges of $H$ intersect in at most one vertex. Let $\mathcal{H}_k$ be the class of all connected, linear, $k$-uniform hypergraphs with maximum degree $2$. It is known [European J. Combin. 36 (2014), 231–236] that if $H \in \mathcal{H}_k$, then $(k+1)\tau(H) \le n+m$, and there are only two hypergraphs that achieve equality in the bound. In this paper, we prove a much more powerful result, and establish tight upper bounds on $\tau(H)$ and tight lower bounds on $\alpha(H)$ that are achieved for  infinite families of hypergraphs. More precisely, if $k \ge 3$ is odd and $H \in \mathcal{H}_k$ has $n$ vertices and $m$ edges, then we prove that $k(k^2 - 3)\tau(H) \le (k-2)(k+1)n + (k - 1)^2m + k-1$ and $k(k^2 - 3)\alpha(H) \ge  (k^2 + k - 4)n  - (k-1)^2 m - (k-1)$. Similar bounds are proven in the case when $k \ge 2$ is even.


10.37236/2646 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Yair Caro ◽  
Adriana Hansberg

Let $G = (V,E)$ be a graph and $k \ge 0$ an integer. A $k$-independent set $S \subseteq V$ is a set of vertices such that the maximum degree in the graph induced by $S$ is at most $k$. With $\alpha_k(G)$ we denote the maximum cardinality of a $k$-independent set of $G$. We prove that, for a graph $G$ on $n$ vertices and average degree $d$, $\alpha_k(G) \ge \frac{k+1}{\lceil d \rceil + k + 1} n$, improving the hitherto best general lower bound due to Caro and Tuza [Improved lower bounds on $k$-independence, J. Graph Theory 15 (1991), 99-107].


10.37236/5309 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern

The 4 Color Theorem (4CT) implies that every $n$-vertex planar graph has an independent set of size at least $\frac{n}4$; this is best possible, as shown by the disjoint union of many copies of $K_4$.  In 1968, Erdős asked whether this bound on independence number could be proved more easily than the full 4CT. In 1976 Albertson showed (independently of the 4CT) that every $n$-vertex planar graph has an independent set of size at least $\frac{2n}9$. Until now, this remained the best bound independent of the 4CT. Our main result improves this bound to $\frac{3n}{13}$.


Sign in / Sign up

Export Citation Format

Share Document