scholarly journals The independence polynomial of inverse commuting graph of dihedral groups

2020 ◽  
Vol 16 (1) ◽  
pp. 115-120
Author(s):  
Aliyu Suleiman ◽  
Aliyu Ibrahim Kiri

Set of vertices not joined by an edge in a graph is called the independent set of the graph. The independence polynomial of a graph is a polynomial whose coefficient is the number of independent sets in the graph. In this research, we introduce and investigate the inverse commuting graph of dihedral groups (D2N) denoted by GIC. It is a graph whose vertex set consists of the non-central elements of the group and for distinct  x,y, E D2N, x and y are adjacent if and only if xy = yx = 1  where 1 is the identity element. The independence polynomials of the inverse commuting graph for dihedral groups are also computed. A formula for obtaining such polynomials without getting the independent sets is also found, which was used to compute for dihedral groups of order 18 up to 32.

2018 ◽  
Vol 14 ◽  
pp. 434-438
Author(s):  
Nabilah Najmuddin ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian ◽  
Hamisan Rahmat

The independence and clique polynomial are two types of graph polynomial that store combinatorial information of a graph. The independence polynomial of a graph is the polynomial in which its coefficients are the number of independent sets in the graph. The independent set of a graph is a set of vertices that are not adjacent. The clique polynomial of a graph is the polynomial in which its coefficients are the number of cliques in the graph. The clique of a graph is a set of vertices that are adjacent. Meanwhile, a graph of group G is called conjugacy class graph if the vertices are non-central conjugacy classes of G and two distinct vertices are connected if and only if their class cardinalities are not coprime. The independence and clique polynomial of the conjugacy class graph of a group G can be obtained by considering the polynomials of complete graph or polynomials of union of some graphs. In this research, the independence and clique polynomials of the conjugacy class graph of dihedral groups of order 2n are determined based on three cases namely when n is odd, when n and n/2 are even, and when n is even and n/2 is odd. For each case, the results of the independence polynomials are of degree two, one and two, and the results of the clique polynomials are of degree (n-1)/2, (n+2)/2 and (n-2)/2, respectively.


2017 ◽  
Vol 13 (4) ◽  
pp. 602-605
Author(s):  
Nabilah Najmuddin ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

An independent set of a graph is a set of pairwise non-adjacent vertices. The independence polynomial of a graph is defined as a polynomial in which the coefficient is the number of the independent set in the graph.  Meanwhile, a graph of a group G is called conjugate graph if the vertices are non-central elements of G and two distinct vertices are adjacent if they are conjugate. The noncommuting graph is defined as a graph whose vertex set is non-central elements in which two vertices are adjacent if and only if they do not commute. In this research, the independence polynomial of the conjugate graph and noncommuting graph are found for three nonabelian groups of order at most eight.


2012 ◽  
Vol 28 (2) ◽  
pp. 279-288
Author(s):  
VADIM E. LEVIT ◽  
◽  
EUGEN MANDRESCU ◽  

A graph with at most two vertices of the same degree is known as antiregular [ Merris, R., Antiregular graphs are universal for trees, Publ. Electrotehn. Fak. Univ. Beograd, Ser. Mat. 14 (2003) 1-3], maximally nonregular [Zykov, A. A., Fundamentals of graph theory, BCS Associates, Moscow, 1990] or quasiperfect [ Behzad, M. and Chartrand, D. M., No graph is perfect, Amer. Math. Monthly 74 (1967), 962-963]. If sk is the number of independent sets of cardinality k in a graph G, then I(G; x) = s0 +s1x+...+sαx α is the independence polynomial of G [ Gutman, I. and Harary, F., Generalizations of the matching polynomial, Utilitas Mathematica 24 (1983), 97-106] , where α = α(G) is the size of a maximum independent set. In this paper we derive closed formulas for the independence polynomials of antiregular graphs. It results in proving that every antiregular graph is uniquely defined by its independence polynomial within the family of threshold graphs. Moreover, the independence polynomial of each antiregular graph is log-concave, it has two real roots at most, and its value at −1 belongs to {−1, 0}.


Author(s):  
Amir Loghman ◽  
Mahtab Khanlar Motlagh

If $s_k$ is the number of independent sets of cardinality $k$ in a graph $G$, then $I(G; x)= s_0+s_1x+…+s_{\alpha} x^{\alpha}$ is the independence polynomial of $G$ [ Gutman, I. and Harary, F., Generalizations of the matching polynomial, Utilitas Mathematica 24 (1983) 97-106] , where $\alpha=\alpha(G)$ is the size of a maximum independent set. Also the PI polynomial of a molecular graph $G$ is defined as $A+\sum x^{|E(G)|-N(e)}$, where $N(e)$ is the number of edges parallel to $e$, $A=|V(G)|(|V(G)|+1)/2-|E(G)|$ and summation goes over all edges of $G$. In [T. Do$\check{s}$li$\acute{c}$, A. Loghman and L. Badakhshian, Computing Topological Indices by Pulling a Few Strings, MATCH Commun. Math. Comput. Chem. 67 (2012) 173-190], several topological indices for all graphs consisting of at most three strings are computed. In this paper we compute the PI and independence polynomials for graphs containing one, two and three strings.


10.37236/9802 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Peter Cameron ◽  
Saul Freedman ◽  
Colva Roney-Dougal

For a nilpotent group $G$, let $\Xi(G)$ be the difference between the complement of the generating graph of $G$ and the commuting graph of $G$, with vertices corresponding to central elements of $G$ removed. That is, $\Xi(G)$ has vertex set $G \setminus Z(G)$, with two vertices adjacent if and only if they do not commute and do not generate $G$. Additionally, let $\Xi^+(G)$ be the subgraph of $\Xi(G)$ induced by its non-isolated vertices. We show that if $\Xi(G)$ has an edge, then $\Xi^+(G)$ is connected with diameter $2$ or $3$, with $\Xi(G) = \Xi^+(G)$ in the diameter $3$ case. In the infinite case, our results apply more generally, to any group with every maximal subgroup normal. When $G$ is finite, we explore the relationship between the structures of $G$ and $\Xi(G)$ in more detail.


2015 ◽  
Vol 07 (01) ◽  
pp. 1450068 ◽  
Author(s):  
M. Afkhami ◽  
Z. Barati ◽  
N. Hoseini ◽  
K. Khashyarmanesh

Let R be a ring with the identity element 1, α be an endomorphism of R and δ be a left α-derivation. In this paper, we introduce a generalization of a commuting graph, which is denoted by ΓR(α, δ), as a directed graph with vertex set R and, for two distinct vertices x and y, there is an arc from x to y if and only if xy = α(y)x + δ(y). We study some basic properties of ΓR(α, δ). Also, we investigate the planarity and genus of the graph ΓR(α, 0).


Author(s):  
Montauban Moreira de Oliveira Jr ◽  
Jean-Guillaume Eon

According to Löwenstein's rule, Al–O–Al bridges are forbidden in the aluminosilicate framework of zeolites. A graph-theoretical interpretation of the rule, based on the concept of independent sets, was proposed earlier. It was shown that one can apply the vector method to the associated periodic net and define a maximal Al/(Al+Si) ratio for any aluminosilicate framework following the rule; this ratio was called the independence ratio of the net. According to this method, the determination of the independence ratio of a periodic net requires finding a subgroup of the translation group of the net for which the quotient graph and a fundamental transversal have the same independence ratio. This article and a companion paper deal with practical issues regarding the calculation of the independence ratio of mainly 2-periodic nets and the determination of site distributions realizing this ratio. The first paper describes a calculation technique based on propositional calculus and introduces a multivariate polynomial, called the independence polynomial. This polynomial can be calculated in an automatic way and provides the list of all maximal independent sets of the graph, hence also the value of its independence ratio. Some properties of this polynomial are discussed; the independence polynomials of some simple graphs, such as short paths or cycles, are determined as examples of calculation techniques. The method is also applied to the determination of the independence ratio of the 2-periodic net dhc.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350064 ◽  
Author(s):  
M. AKBARI ◽  
A. R. MOGHADDAMFAR

We consider the non-commuting graph ∇(G) of a non-abelian finite group G; its vertex set is G\Z(G), the set of non-central elements of G, and two distinct vertices x and y are joined by an edge if [x, y] ≠ 1. We determine the structure of any finite non-abelian group G (up to isomorphism) for which ∇(G) is a complete multipartite graph (see Propositions 3 and 4). It is also shown that a non-commuting graph is a strongly regular graph if and only if it is a complete multipartite graph. Finally, it is proved that there is no non-abelian group whose non-commuting graph is self-complementary and n-cube.


2018 ◽  
Vol 14 ◽  
pp. 473-476 ◽  
Author(s):  
Nur Idayu Alimon ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Assume  is a non-abelian group  A dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. The non-commuting graph of  denoted by  is the graph of vertex set  whose vertices are non-central elements, in which  is the center of  and two distinct vertices  and  are joined by an edge if and only if  In this paper, some topological indices of the non-commuting graph,  of the dihedral groups,  are presented. In order to determine the Edge-Wiener index, First Zagreb index and Second Zagreb index of the non-commuting graph,  of the dihedral groups,  previous results of some of the topological indices of non-commuting graph of finite group are used. Then, the non-commuting graphs of dihedral groups of different orders are found. Finally, the generalisation of Edge-Wiener index, First Zagreb index and Second Zagreb index of the non-commuting graphs of dihedral groups are determined.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850070
Author(s):  
Karim Ahmadidelir

The non-commuting graph associated to a non-abelian group [Formula: see text], [Formula: see text], is a graph with vertex set [Formula: see text] where distinct non-central elements [Formula: see text] and [Formula: see text] of [Formula: see text] are joined by an edge if and only if [Formula: see text]. The non-commuting graph of a non-abelian finite group has received some attention in existing literature. Recently, many authors have studied the non-commuting graph associated to a non-abelian group. In particular, the authors put forward the following conjectures: Conjecture 1. Let [Formula: see text] and [Formula: see text] be two non-abelian finite groups such that [Formula: see text]. Then [Formula: see text]. Conjecture 2 (AAM’s Conjecture). Let [Formula: see text] be a finite non-abelian simple group and [Formula: see text] be a group such that [Formula: see text]. Then [Formula: see text]. Some authors have proved the first conjecture for some classes of groups (specially for all finite simple groups and non-abelian nilpotent groups with irregular isomorphic non-commuting graphs) but in [Moghaddamfar, About noncommuting graphs, Sib. Math. J. 47(5) (2006) 911–914], Moghaddamfar has shown that it is not true in general with some counterexamples to this conjecture. On the other hand, Solomon and Woldar proved the second conjecture, in [R. Solomon and A. Woldar, Simple groups are characterized by their non-commuting graph, J. Group Theory 16 (2013) 793–824]. In this paper, we will define the same concept for a finite non-commutative Moufang loop [Formula: see text] and try to characterize some finite non-commutative Moufang loops with their non-commuting graph. Particularly, we obtain examples of finite non-associative Moufang loops and finite associative Moufang loops (groups) of the same order which have isomorphic non-commuting graphs. Also, we will obtain some results related to the non-commuting graph of a finite non-commutative Moufang loop. Finally, we give a conjecture stating that the above result is true for all finite simple Moufang loops.


Sign in / Sign up

Export Citation Format

Share Document