scholarly journals M/M/1 Retrial queueing system with negative arrival under non-preemptive priority service

Author(s):  
A. Muthu Ganapathi Subramanian ◽  
G. Ayyappan ◽  
G. Sekar

Consider a single server retrial queueing system with negative arrival under non-pre-emptive priority service in which three types of customers arrive in a poisson process with arrival rate λ1 for low priority customers and λ2 for high priority customers and λ3 for negative arrival. Low and high priority customers are identified as primary calls. The service times follow an exponential distribution with parameters μ1 and μ2 for low and high priority customers. The retrial and negative arrivals are introduced for low priority customers only. Gelenbe (1991) has introduced a new class of queueing processes in which customers are either positive or negative. Positive means a regular customer who is treated in the usual way by a server. Negative customers have the effect of deleting some customer in the queue. In the simplest version, a negative arrival removes an ordinary positive customer or a random batch of positive customers according to some strategy. It is noted that the existence of a flow of negative arrivals provides a control mechanismto control excessive congestion at the retrial group and also assume that the negative customers only act when the server is busy. Let K be the maximumnumber of waiting spaces for high priority customers in front of the service station. The high priorities customers will be governed by the Non-preemptive priority service. The access from the orbit to the service facility is governed by the classical retrial policy. This model is solved by using Matrix geometric Technique. Numerical study have been done for Analysis of Mean number of low priority customers in the orbit (MNCO), Mean number of high priority customers in the queue(MPQL),Truncation level (OCUT),Probability of server free and Probabilities of server busy with low and high priority customers for various values of λ1 , λ2 , λ3 , μ1 , μ2 ,σ and k in elaborate manner and also various particular cases of this model have been discussed.

Author(s):  
Kalyanaraman Rathinasabapathy

A retrial queueing system with two types of batch arrivals is considered. The arrivals are called type I and type II customers. The type I customers arrive in batches of size k with probability c_k and type II customers arrive in batches of size k with probability d_k. Service time distributions are identical independent distributions and are different for both type of customers. If the arriving customers are blocked due to server being busy, type I customers are queued in a priority queue of infinity capacity whereas type II customers entered into retrial group in order to seek service again after a random amount of time. For this model the joint distribution of the number of customers in the priority queue and in the retrial group in closed form is obtained. Some particular models and operating characteristics are obtained. A numerical study is also carried out.


Author(s):  
Varghese Jacob

This paper presents a retrial queueing system with customer induced interruption while in service. We consider a single server queueing system of infinite capacity to which customers arrive according to a Poisson process and the service time follows an exponential distribution.An arriving customer to an idle server obtains service immediately and customers who find server busy go directly to the orbit from where he retry for service. The inter-retrial time follows exponential distribution. The customer interruption while in service occurs according to a Poisson process and the interruption duration follows an exponential distribution. The customer whose service is got interrupted will enter into a finite buffer. Any interrupted customer, finding the buffer full, is considered lost. Those interrupted customers who complete their interruptions will be placed into another buffer of same size. The interrupted customers waiting for service are given non-preemptive priority over new customers. We analyse the steady-state behavior of this queuing system. Several performance measures are obtained. Numerical illustrations of the system behaviour are also provided with example.


2014 ◽  
Vol 31 (02) ◽  
pp. 1440002 ◽  
Author(s):  
K. AVRACHENKOV ◽  
E. MOROZOV ◽  
R. NEKRASOVA ◽  
B. STEYAERT

In this paper, we study a new retrial queueing system with N classes of customers, where a class-i blocked customer joins orbit i. Orbit i works like a single-server queueing system with (exponential) constant retrial time (with rate [Formula: see text]) regardless of the orbit size. Such a system is motivated by multiple telecommunication applications, for instance wireless multi-access systems, and transmission control protocols. First, we present a review of some corresponding recent results related to a single-orbit retrial system. Then, using a regenerative approach, we deduce a set of necessary stability conditions for such a system. We will show that these conditions have a very clear probabilistic interpretation. We also performed a number of simulations to show that the obtained conditions delimit the stability domain with a remarkable accuracy, being in fact the (necessary and sufficient) stability criteria, at the very least for the 2-orbit M/M/1/1-type and M/Pareto/1/1-type retrial systems that we focus on.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 419 ◽  
Author(s):  
Sherif Ammar ◽  
Pakkirisamy Rajadurai

In this investigation, a novel sort of retrial queueing system with working breakdown services is introduced. Two distinct kinds of customers are considered, which are priority and ordinary customers. The normal busy server may become inadequate due to catastrophes at any time which cause the major server to fail. At a failure moment, the major server is sent to be fixed and the server functions at a lower speed (called the working breakdown period) during the repair period. The probability generating functions (PGF) of the system size is found using the concepts of the supplementary variable technique (SVT). The impact of parameters in system performance measures and cost optimization are examined numerically.


2019 ◽  
Vol 53 (3) ◽  
pp. 767-786
Author(s):  
Zidani Nesrine ◽  
Pierre Spiteri ◽  
Natalia Djellab

This paper deals with a retrial queueing system M/M/C/K with exponential abandonment at which positive and negative primary customers arrive according to Poisson processes. This model is of practical interest: it permits to analyze the performance in call centers or multiprocessor computer systems. For model under study, we find the ergodicity condition and also the approximate solution by applying Value Extrapolation method which includes solving of some algebraic system of equations. To this end, we have resolved the algebraic system in question by different numerical methods. We present also numerical results to analyze the system performance.


Sign in / Sign up

Export Citation Format

Share Document