scholarly journals Chow motives without projectivity

2009 ◽  
Vol 145 (5) ◽  
pp. 1196-1226 ◽  
Author(s):  
Jörg Wildeshaus

AbstractIn a recent paper, Bondarko [Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), Preprint (2007), 0704.4003] defined the notion of weight structure, and proved that the category DMgm(k) of geometrical motives over a perfect field k, as defined and studied by Voevodsky, Suslin and Friedlander [Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000)], is canonically equipped with such a structure. Building on this result, and under a condition on the weights avoided by the boundary motive [J. Wildeshaus, The boundary motive: definition and basic properties, Compositio Math. 142 (2006), 631–656], we describe a method to construct intrinsically in DMgm(k) a motivic version of interior cohomology of smooth, but possibly non-projective schemes. In a sequel to this work [J. Wildeshaus, On the interior motive of certain Shimura varieties: the case of Hilbert–Blumenthal varieties, Preprint (2009), 0906.4239], this method will be applied to Shimura varieties.

2011 ◽  
Vol 147 (5) ◽  
pp. 1434-1446 ◽  
Author(s):  
M. V. Bondarko

AbstractThe main goal of this paper is to deduce (from a recent resolution of singularities result of Gabber) the following fact: (effective) Chow motives with ℤ[1/p]-coefficients over a perfect field k of characteristic p generate the category DMeffgm[1/p] (of effective geometric Voevodsky’s motives with ℤ[1/p]-coefficients). It follows that DMeffgm[1/p] can be endowed with a Chow weight structure wChow whose heart is Choweff[1/p] (weight structures were introduced in a preceding paper, where the existence of wChow for DMeffgmℚ was also proved). As shown in previous papers, this statement immediately yields the existence of a conservative weight complex functor DMeffgm[1/p]→Kb (Choweff [1/p]) (which induces an isomorphism on K0-groups), as well as the existence of canonical and functorial (Chow)-weight spectral sequences and weight filtrations for any cohomology theory on DMeffgm[1/p] . We also mention a certain Chow t-structure for DMeff−[1/p] and relate it with unramified cohomology.


Author(s):  
M.V. Bondarko

AbstractIn this paper we introduce a new notion ofweight structure (w)for a triangulated categoryC; this notion is an important natural counterpart of the notion oft-structure. It allows extending several results of the preceding paper [Bon09] to a large class of triangulated categories and functors.Theheartofwis an additive categoryHw⊂C. We prove that a weight structure yields Postnikov towers for anyX∈ObjC(whose 'factors'Xi∈ObjHw). For any (co)homological functorH:C→A(Ais abelian) such a tower yields aweight spectral sequenceT : H(Xi[j]) ⇒H(X[i + j]); Tis canonical and functorial inXstarting fromE2.Tspecializes to the usual (Deligne) weight spectral sequences for 'classical' realizations of Voevodsky's motivesDMeffgm(if we considerw = wChowwithHw=Choweff) and to Atiyah-Hirzebruch spectral sequences in topology.We prove that there often exists an exact conservative weight complex functorC→K(Hw). This is a generalization of the functort:DMeffgm→Kb(Choweff) constructed in [Bon09] (which is an extension of the weight complex of Gillet and Soulé). We prove thatK0(C) ≅K0(Hw) under certain restrictions.We also introduce the concept of adjacent structures: at-structure isadjacenttowif their negative parts coincide. This is the case for the Postnikovt-structure for the stable homotopy categorySH(of topological spectra) and a certain weight structure for it that corresponds to the cellular filtration. We also define a new (Chow)t-structuretChowforDMeff_⊃DMeffgmwhich is adjacent to the Chow weight structure. We haveHtChow≅ AddFun(Choweffop,Ab);tChowis related to unramified cohomology. Functors left adjoint to those that aret-exact with respect to somet-structures are weight-exact with respect to the corresponding adjacent weight structures, and vice versa. Adjacent structures identify two spectral sequences converging toC(X,Y): the one that comes from weight truncations ofXwith the one coming fromt-truncations ofY(forX,Y∈ObjC). Moreover, the philosophy of adjacent structures allows expressing torsion motivic cohomology of certain motives in terms of the étale cohomology of their 'submotives'. This is an extension of the calculation of E2of coniveau spectral sequences (by Bloch and Ogus).


2016 ◽  
Vol 17 (4) ◽  
pp. 785-821 ◽  
Author(s):  
Mikhail V. Bondarko ◽  
Vladimir A. Sosnilo

In this paper we demonstrate thatnon-commutative localizationsof arbitrary additive categories (generalizing those defined by Cohn in the setting of rings) are closely (and naturally) related to weight structures. Localizing an arbitrary triangulated category$\text{}\underline{C}$by a set$S$of morphisms in the heart$\text{}\underline{Hw}$of a weight structure$w$on it one obtains a triangulated category endowed with a weight structure$w^{\prime }$. The heart of$w^{\prime }$is a certain version of the Karoubi envelope of the non-commutative localization$\text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$(of$\text{}\underline{Hw}$by$S$). The functor$\text{}\underline{Hw}\rightarrow \text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$is the natural categorical version of Cohn’s localization of a ring, i.e., it is universal among additive functors that make all elements of$S$invertible. For any additive category$\text{}\underline{A}$, taking$\text{}\underline{C}=K^{b}(\text{}\underline{A})$we obtain a very efficient tool for computing$\text{}\underline{A}[S^{-1}]_{\mathit{add}}$; using it, we generalize the calculations of Gerasimov and Malcolmson (made for rings only). We also prove that$\text{}\underline{A}[S^{-1}]_{\mathit{add}}$coincides with the ‘abstract’ localization$\text{}\underline{A}[S^{-1}]$(as constructed by Gabriel and Zisman) if$S$contains all identity morphisms of$\text{}\underline{A}$and is closed with respect to direct sums. We apply our results to certain categories of birational motives$DM_{gm}^{o}(U)$(generalizing those defined by Kahn and Sujatha). We define$DM_{gm}^{o}(U)$for an arbitrary$U$as a certain localization of$K^{b}(Cor(U))$and obtain a weight structure for it. When$U$is the spectrum of a perfect field, the weight structure obtained this way is compatible with the corresponding Chow and Gersten weight structures defined by the first author in previous papers. For a general$U$the result is completely new. The existence of the correspondingadjacent$t$-structure is also a new result over a general base scheme; its heart is a certain category of birational sheaves with transfers over$U$.


Author(s):  
Ziquan Yang

Abstract We generalize Mukai and Shafarevich’s definitions of isogenies between K3 surfaces over ${\mathbb{C}}$ to an arbitrary perfect field and describe how to construct isogenous K3 surfaces over $\bar{{\mathbb{F}}}_p$ by prescribing linear algebraic data when $p$ is large. The main step is to show that isogenies between Kuga–Satake abelian varieties induce isogenies between K3 surfaces, in the context of integral models of Shimura varieties. As a byproduct, we show that every K3 surface of finite height admits a CM lifting under a mild assumption on $p$.


2021 ◽  
Vol 157 (3) ◽  
pp. 641-648
Author(s):  
Ana J. Reguera

The purpose of this note is to correct a mistake in the article “A curve selection lemma in spaces of arcs and the image of the Nash map” Compositio Math. 142 (2006), 119–130. It is due to an overlooked hypothesis in the definition of generically stable subset of the space of arcs X∞ of a variety X defined over a perfect field k.


2019 ◽  
Vol 163 (1-2) ◽  
pp. 27-56 ◽  
Author(s):  
Alex Torzewski

Abstract Let $$(G,{\mathfrak {X}})$$ ( G , X ) be a Shimura datum and K a neat open compact subgroup of $$G(\mathbb {A}_f)$$ G ( A f ) . Under mild hypothesis on $$(G,{\mathfrak {X}})$$ ( G , X ) , the canonical construction associates a variation of Hodge structure on $$\text {Sh}_K(G,{\mathfrak {X}})(\mathbb {C})$$ Sh K ( G , X ) ( C ) to a representation of G. It is conjectured that this should be of motivic origin. Specifically, there should be a lift of the canonical construction which takes values in relative Chow motives over $$\text {Sh}_K(G,{\mathfrak {X}})$$ Sh K ( G , X ) and is functorial in $$(G,{\mathfrak {X}})$$ ( G , X ) . Using the formalism of mixed Shimura varieties, we show that such a motivic lift exists on the full subcategory of representations of Hodge type $$\{(-1,0),(0,-1)\}$$ { ( - 1 , 0 ) , ( 0 , - 1 ) } . If $$(G,{\mathfrak {X}})$$ ( G , X ) is equipped with a choice of PEL-datum, Ancona has defined a motivic lift for all representations of G. We show that this is independent of the choice of PEL-datum and give criteria for it to be compatible with base change. Additionally, we provide a classification of Shimura data of PEL-type and demonstrate that the canonical construction is applicable in this context.


2015 ◽  
Vol 151 (5) ◽  
pp. 917-956 ◽  
Author(s):  
Mikhail V. Bondarko

The goal of this paper is to prove that if certain ‘standard’ conjectures on motives over algebraically closed fields hold, then over any ‘reasonable’ scheme $S$ there exists a motivic$t$-structure for the category $\text{DM}_{c}(S)$ of relative Voevodsky’s motives (to be more precise, for the Beilinson motives described by Cisinski and Deglise). If $S$ is of finite type over a field, then the heart of this $t$-structure (the category of mixed motivic sheaves over $S$) is endowed with a weight filtration with semisimple factors. We also prove a certain ‘motivic decomposition theorem’ (assuming the conjectures mentioned) and characterize semisimple motivic sheaves over $S$ in terms of those over its residue fields. Our main tool is the theory of weight structures. We actually prove somewhat more than the existence of a weight filtration for mixed motivic sheaves: we prove that the motivic $t$-structure is transversal to the Chow weight structure for $\text{DM}_{c}(S)$ (that was introduced previously by Hébert and the author). We also deduce several properties of mixed motivic sheaves from this fact. Our reasoning relies on the degeneration of Chow weight spectral sequences for ‘perverse étale homology’ (which we prove unconditionally); this statement also yields the existence of the Chow weight filtration for such (co)homology that is strictly restricted by (‘motivic’) morphisms.


2018 ◽  
Vol 2020 (23) ◽  
pp. 9593-9639 ◽  
Author(s):  
Jörg Wildeshaus

Abstract The purpose of this article is to provide a simplified construction of the intermediate extension of a Chow motive, provided that a condition on absence of weights in the boundary is satisfied. We give a criterion, which guarantees the validity of the condition, and compare our new construction to the theory of the interior motive established earlier. We finish the article with a review of the known applications to the boundary of Shimura varieties.


2010 ◽  
Vol 146 (2) ◽  
pp. 367-403 ◽  
Author(s):  
Pascal Boyer

AbstractIn Boyer [Monodromy of perverse sheaves on vanishing cycles on some Shimura varieties, Invent. Math. 177 (2009), 239–280 (in French)], a sheaf version of the monodromy-weight conjecture for some unitary Shimura varieties was proved by giving explicitly the monodromy filtration of the complex of vanishing cycles in terms of local systems introduced in Harris and Taylor [The geometry and cohomology of some simple Shimura varieties (Princeton University Press, Princeton, NJ, 2001)]. The main result of this paper is the cohomological version of the monodromy-weight conjecture for these Shimura varieties, which we prove by means of an explicit description of the groups of cohomology in terms of automorphic representations and the local Langlands correspondence.


Sign in / Sign up

Export Citation Format

Share Document