scholarly journals A geometric approach to Orlov’s theorem

2012 ◽  
Vol 148 (5) ◽  
pp. 1365-1389 ◽  
Author(s):  
Ian Shipman

AbstractA famous theorem of D. Orlov describes the derived bounded category of coherent sheaves on projective hypersurfaces in terms of an algebraic construction called graded matrix factorizations. In this article, I implement a proposal of E. Segal to prove Orlov’s theorem in the Calabi–Yau setting using a globalization of the category of graded matrix factorizations (graded D-branes). Let X⊂ℙ be a projective hypersurface. Segal has already established an equivalence between Orlov’s category of graded matrix factorizations and the category of graded D-branes on the canonical bundle Kℙ to ℙ. To complete the picture, I give an equivalence between the homotopy category of graded D-branes on Kℙ and Dbcoh(X). This can be achieved directly, as well as by deforming Kℙ to the normal bundle of X⊂Kℙ and invoking a global version of Knörrer periodicity. We also discuss an equivalence between graded D-branes on a general smooth quasiprojective variety and on the formal neighborhood of the singular locus of the zero fiber of the potential.

Author(s):  
D. Huybrechts

This chapter is devoted to results by Bondal and Orlov which show that for varieties with ample (anti-)canonical bundle, the bounded derived category of coherent sheaves determines the variety. Except for the case of elliptic curves, this settles completely the classification of derived categories of smooth curves. The complexity of the derived category is reflected by its group of autoequivalences. This is studied by means of ample sequences.


2016 ◽  
Vol 2016 (714) ◽  
pp. 1-122 ◽  
Author(s):  
Alexander Polishchuk ◽  
Arkady Vaintrob

AbstractWe give a purely algebraic construction of a cohomological field theory associated with a quasihomogeneous isolated hypersurface singularity


Author(s):  
Maria Gioia Cifani ◽  
Alice Cuzzucoli ◽  
Riccardo Moschetti

AbstractLet X be an irreducible, reduced complex projective hypersurface of degree d. A point P not contained in X is called uniform if the monodromy group of the projection of X from P is isomorphic to the symmetric group $$S_d$$ S d . We prove that the locus of non-uniform points is finite when X is smooth or a general projection of a smooth variety. In general, it is contained in a finite union of linear spaces of codimension at least 2, except possibly for a special class of hypersurfaces with singular locus linear in codimension 1. Moreover, we generalise a result of Fukasawa and Takahashi on the finiteness of Galois points.


2018 ◽  
Vol 25 (03) ◽  
pp. 437-458
Author(s):  
Hao Wen ◽  
Chunhui Liu

We fix a counting function of multiplicities of algebraic points in a projective hypersurface over a number field, and take the sum over all algebraic points of bounded height and fixed degree. An upper bound for the sum with respect to this counting function will be given in terms of the degree of the hypersurface, the dimension of the singular locus, the upper bounds of height, and the degree of the field of definition.


2008 ◽  
Vol 144 (2) ◽  
pp. 522-540 ◽  
Author(s):  
Dror Varolin

AbstractWe prove a theorem on the extension of holomorphic sections of powers of adjoint bundles from submanifolds of complex codimension 1 having non-trivial normal bundle. The first such result, due to Takayama, considers the case where the canonical bundle is twisted by a line bundle that is a sum of a big and nef line bundle and a $\mathbb {Q}$-divisor that has Kawamata log terminal singularities on the submanifold from which extension occurs. In this paper we weaken the positivity assumptions on the twisting line bundle to what we believe to be the minimal positivity hypotheses. The main new idea is an L2 extension theorem of Ohsawa–Takegoshi type, in which twisted canonical sections are extended from submanifolds with non-trivial normal bundle.


2016 ◽  
Vol 152 (10) ◽  
pp. 2071-2112
Author(s):  
Alexander Polishchuk

In this work we prove the so-called dimension property for the cohomological field theory associated with a homogeneous polynomial $W$ with an isolated singularity, in the algebraic framework of [A. Polishchuk and A. Vaintrob, Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016), 1–122]. This amounts to showing that some cohomology classes on the Deligne–Mumford moduli spaces of stable curves, constructed using Fourier–Mukai-type functors associated with matrix factorizations, live in prescribed dimension. The proof is based on a homogeneity result established in [A. Polishchuk and A. Vaintrob, Algebraic construction of Witten’s top Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (American Mathematical Society, Providence, RI, 2001), 229–249] for certain characteristic classes of Koszul matrix factorizations of $0$. To reduce to this result, we use the theory of Fourier–Mukai-type functors involving matrix factorizations and the natural rational lattices in the relevant Hochschild homology spaces, as well as a version of Hodge–Riemann bilinear relations for Hochschild homology of matrix factorizations. Our approach also gives a proof of the dimension property for the cohomological field theories associated with some quasihomogeneous polynomials with an isolated singularity.


Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson

1984 ◽  
Vol 45 (C6) ◽  
pp. C6-87-C6-94
Author(s):  
H. Reinhardt ◽  
R. Balian ◽  
Y. Alhassid

Sign in / Sign up

Export Citation Format

Share Document