scholarly journals Homogeneity of cohomology classes associated with Koszul matrix factorizations

2016 ◽  
Vol 152 (10) ◽  
pp. 2071-2112
Author(s):  
Alexander Polishchuk

In this work we prove the so-called dimension property for the cohomological field theory associated with a homogeneous polynomial $W$ with an isolated singularity, in the algebraic framework of [A. Polishchuk and A. Vaintrob, Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016), 1–122]. This amounts to showing that some cohomology classes on the Deligne–Mumford moduli spaces of stable curves, constructed using Fourier–Mukai-type functors associated with matrix factorizations, live in prescribed dimension. The proof is based on a homogeneity result established in [A. Polishchuk and A. Vaintrob, Algebraic construction of Witten’s top Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (American Mathematical Society, Providence, RI, 2001), 229–249] for certain characteristic classes of Koszul matrix factorizations of $0$. To reduce to this result, we use the theory of Fourier–Mukai-type functors involving matrix factorizations and the natural rational lattices in the relevant Hochschild homology spaces, as well as a version of Hodge–Riemann bilinear relations for Hochschild homology of matrix factorizations. Our approach also gives a proof of the dimension property for the cohomological field theories associated with some quasihomogeneous polynomials with an isolated singularity.

2016 ◽  
Vol 2016 (714) ◽  
pp. 1-122 ◽  
Author(s):  
Alexander Polishchuk ◽  
Arkady Vaintrob

AbstractWe give a purely algebraic construction of a cohomological field theory associated with a quasihomogeneous isolated hypersurface singularity


2015 ◽  
Vol 98 ◽  
pp. 312-339 ◽  
Author(s):  
Jørgen Ellegaard Andersen ◽  
Leonid O. Chekhov ◽  
Paul Norbury ◽  
Robert C. Penner

2014 ◽  
Vol 213 ◽  
pp. 141-187 ◽  
Author(s):  
Valentin Tonita

AbstractLet χ be a smooth proper Deligne–Mumford stack over ℂ. One can define twisted orbifold Gromov–Witten invariants of χ by considering multiplicative invertible characteristic classes of various bundles on the moduli spaces of stable maps χg,n,d, cupping them with evaluation and cotangent line classes, and then integrating against the virtual fundamental class. These are more general than the twisted invariants introduced by Tseng. We express the generating series of the twisted invariants in terms of the generating series of the untwisted ones. We derive the corollaries which are used in a paper with Givental about the quantum K-theory of a complex compact manifold X.


2019 ◽  
Vol 57 (1) ◽  
pp. 191-213
Author(s):  
R. Pandharipande ◽  
D. Zvonkine ◽  
D. Petersen

2011 ◽  
Vol 61 (7) ◽  
pp. 2719-2743 ◽  
Author(s):  
Sergey Shadrin ◽  
Dimitri Zvonkine

2019 ◽  
Vol 6 (5) ◽  
Author(s):  
Cyril Closset ◽  
Michele Del Zotto ◽  
Vivek Saxena

We revisit the correspondence between Calabi-Yau (CY) threefold isolated singularities \mathbf{X}𝐗 and five-dimensional superconformal field theories (SCFTs), which arise at low energy in M-theory on the space-time transverse to \mathbf{X}𝐗. Focussing on the case of toric CY singularities, we analyze the “gauge-theory phases” of the SCFT by exploiting fiberwise M-theory/type IIA duality. In this setup, the low-energy gauge group simply arises on stacks of coincident D6-branes wrapping 2-cycles in some ALE space of type A_{M-1}AM−1 fibered over a real line, and the map between the Kähler parameters of \mathbf{X}𝐗 and the Coulomb branch parameters of the field theory (masses and VEVs) can be read off systematically. Different type IIA “reductions” give rise to different gauge theory phases, whose existence depends on the particular (partial) resolutions of the isolated singularity \mathbf{X}𝐗. We also comment on the case of non-isolated toric singularities. Incidentally, we propose a slightly modified expression for the Coulomb-branch prepotential of 5d \mathcal{N}=1𝒩=1 gauge theories.


2011 ◽  
Vol 26 (18) ◽  
pp. 3013-3034 ◽  
Author(s):  
R. CARTAS-FUENTEVILLA ◽  
A. ESCALANTE-HERNANDEZ ◽  
J. BERRA-MONTIEL

By using the Atiyah–Singer theorem through some similarities with the instanton and the antiinstanton moduli spaces, the dimension of the moduli space for two- and four-dimensional BF theories valued in different background manifolds and gauge groups scenarios is determined. Additionally, we develop Dirac's canonical analysis for a four-dimensional modified BF theory, which reproduces the topological YM theory. This framework will allow us to understand the local symmetries, the constraints, the extended Hamiltonian and the extended action of the theory.


Sign in / Sign up

Export Citation Format

Share Document