scholarly journals Nearby cycles of Whittaker sheaves on Drinfeld’s compactification

2018 ◽  
Vol 154 (8) ◽  
pp. 1775-1800
Author(s):  
Justin Campbell

In this article we give a geometric construction of a tilting perverse sheaf on Drinfeld’s compactification, by applying the nearby cycles functor to a family of nondegenerate Whittaker sheaves. Its restrictions along the defect stratification are shown to be certain perverse sheaves attached to the nilpotent radical of the Langlands dual Lie algebra. We also describe the subquotients of the monodromy filtration using the Picard–Lefschetz oscillators introduced by Schieder. We give an argument that the subquotients are semisimple based on the action, constructed by Feigin, Finkelberg, Kuznetsov, and Mirković, of the Langlands dual Lie algebra on the global intersection cohomology of quasimaps into flag varieties.

2019 ◽  
Vol 72 (1) ◽  
pp. 1-55
Author(s):  
Pramod N. Achar ◽  
Simon Riche ◽  
Cristian Vay

AbstractIn this paper we construct an abelian category of mixed perverse sheaves attached to any realization of a Coxeter group, in terms of the associated Elias–Williamson diagrammatic category. This construction extends previous work of the first two authors, where we worked with parity complexes instead of diagrams, and we extend most of the properties known in this case to the general setting. As an application we prove that the split Grothendieck group of the Elias–Williamson diagrammatic category is isomorphic to the corresponding Hecke algebra, for any choice of realization.


2022 ◽  
Vol 29 (01) ◽  
pp. 53-66
Author(s):  
Jeffrey Bergen ◽  
Piotr Grzeszczuk

Let [Formula: see text] be an automorphism and[Formula: see text] be a [Formula: see text]-skew [Formula: see text]-derivation of an [Formula: see text]-algebra [Formula: see text]. We prove that if [Formula: see text] is semiprimitive and [Formula: see text] is algebraic, then the subalgebra [Formula: see text] has nilpotent Jacobson radical. Using this result, we obtain similar relations for the Baer prime radical, the Levitzki locally nilpotent radical, and the Köthe nil radical when the field [Formula: see text] is uncountable. Then we apply it to actions of the [Formula: see text]-dimensional Taft Hopf algebra [Formula: see text] and the [Formula: see text]-analogue [Formula: see text] of the enveloping algebra of the Lie algebra [Formula: see text].


2015 ◽  
Vol 15 (02) ◽  
pp. 1650029 ◽  
Author(s):  
Leandro Cagliero ◽  
Fernando Szechtman

Let 𝔤 be a finite-dimensional Lie algebra over a field of characteristic 0, with solvable radical 𝔯 and nilpotent radical 𝔫 = [𝔤, 𝔯]. Given a finite-dimensional 𝔤-module U, its nilpotency series 0 ⊂ U(1) ⊂ ⋯ ⊂ U(m) = U is defined so that U(1) is the 0-weight space of 𝔫 in U, U(2)/U(1) is the 0-weight space of 𝔫 in U/U(1), and so on. We say that U is linked if each factor of its nilpotency series is a uniserial 𝔤/𝔫-module, i.e. its 𝔤/𝔫-submodules form a chain. Every uniserial 𝔤-module is linked, every linked 𝔤-module is indecomposable with irreducible socle, and both converses fail. In this paper, we classify all linked 𝔤-modules when 𝔤 = 〈x〉 ⋉ 𝔞 and ad x acts diagonalizably on the abelian Lie algebra 𝔞. Moreover, we identify and classify all uniserial 𝔤-modules amongst them.


Author(s):  
B. Hartley

The purpose of this paper is to investigate the locally nilpotent radical of a Lie algebra L over a field of characteristic zero, its behaviour under derivations of L, and its behaviour with regard to finite-dimensional nilpotent subinvariant and ascendant subalgebras of L.


2007 ◽  
Vol 16 (02) ◽  
pp. 127-202 ◽  
Author(s):  
JØRGEN ELLEGAARD ANDERSEN ◽  
KENJI UENO

We give a geometric construct of a modular functor for any simple Lie-algebra and any level by twisting the constructions in [16, 19] by a certain fractional power of the abelian theory first considered in [13] and further studied in [2].


2012 ◽  
Vol 11 (4) ◽  
pp. 695-745
Author(s):  
Pramod N. Achar ◽  
David Treumann

AbstractTwo major results in the theory of ℓ-adic mixed constructible sheaves are the purity theorem (every simple perverse sheaf is pure) and the decomposition theorem (every pure object in the derived category is a direct sum of shifts of simple perverse sheaves). In this paper, we prove analogues of these results for coherent sheaves. Specifically, we work with staggered sheaves, which form the heart of a certain t-structure on the derived category of equivariant coherent sheaves. We prove, under some reasonable hypotheses, that every simple staggered sheaf is pure, and that every pure complex of coherent sheaves is a direct sum of shifts of simple staggered sheaves.


Sign in / Sign up

Export Citation Format

Share Document