The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties

Author(s):  
Ulrich Görtz ◽  
Thomas J Haines
2009 ◽  
Vol 8 (3) ◽  
pp. 507-564 ◽  
Author(s):  
G. Pappas ◽  
M. Rapoport

AbstractWe continue our study of the reduction of PEL Shimura varieties with parahoric level structure at primespat which the group defining the Shimura variety ramifies. We describe ‘good’p-adic integral models of these Shimura varieties and study their étale local structure. In the present paper we mainly concentrate on the case of unitary groups for a ramified quadratic extension. Some of our results are applications of the theory of twisted affine flag varieties that we developed in a previous paper.


2010 ◽  
Vol 146 (5) ◽  
pp. 1339-1382 ◽  
Author(s):  
Ulrich Görtz ◽  
Thomas J. Haines ◽  
Robert E. Kottwitz ◽  
Daniel C. Reuman

AbstractThis paper studies affine Deligne–Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, and extends previous conjectures concerning their dimensions. We generalize the superset method, an algorithmic approach to the questions of non-emptiness and dimension. Our non-emptiness results apply equally well to the p-adic context and therefore relate to moduli of p-divisible groups and Shimura varieties with Iwahori level structure.


2016 ◽  
Vol 152 (12) ◽  
pp. 2563-2601 ◽  
Author(s):  
Brandon Levin

We extend the group-theoretic construction of local models of Pappas and Zhu [Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math.194(2013), 147–254] to the case of groups obtained by Weil restriction along a possibly wildly ramified extension. This completes the construction of local models for all reductive groups when$p\geqslant 5$. We show that the local models are normal with special fiber reduced and study the monodromy action on the sheaves of nearby cycles. As a consequence, we prove a conjecture of Kottwitz that the semi-simple trace of Frobenius gives a central function in the parahoric Hecke algebra. We also introduce a notion of splitting model and use this to study the inertial action in the case of an unramified group.


2007 ◽  
Vol 26 (4) ◽  
pp. 415-430 ◽  
Author(s):  
Ulrich Görtz

Author(s):  
Peter Scholze ◽  
Jared Weinstein

This chapter reviews affine flag varieties. It generalizes some of the previous results to the case where G over Zp is a parahoric group scheme. In fact, slightly more generally, it allows the case that the special fiber is not connected, with connected component of the identity G? being a parahoric group scheme. This case comes up naturally in the classical definition of Rapoport-Zink spaces. The chapter first discusses the Witt vector affine flag variety over Fp. This is an increasing union of perfections of quasiprojective varieties along closed immersions. In the case that G° is parahoric, one gets ind-properness.


2008 ◽  
Vol 219 (1) ◽  
pp. 118-198 ◽  
Author(s):  
G. Pappas ◽  
M. Rapoport

Author(s):  
Alexander Pütz

AbstractWe study finite dimensional approximations to degenerate versions of affine flag varieties using quiver Grassmannians for cyclic quivers. We prove that they admit cellular decompositions parametrized by affine Dellac configurations, and that their irreducible components are normal Cohen-Macaulay varieties with rational singularities.


2018 ◽  
Vol 154 (8) ◽  
pp. 1775-1800
Author(s):  
Justin Campbell

In this article we give a geometric construction of a tilting perverse sheaf on Drinfeld’s compactification, by applying the nearby cycles functor to a family of nondegenerate Whittaker sheaves. Its restrictions along the defect stratification are shown to be certain perverse sheaves attached to the nilpotent radical of the Langlands dual Lie algebra. We also describe the subquotients of the monodromy filtration using the Picard–Lefschetz oscillators introduced by Schieder. We give an argument that the subquotients are semisimple based on the action, constructed by Feigin, Finkelberg, Kuznetsov, and Mirković, of the Langlands dual Lie algebra on the global intersection cohomology of quasimaps into flag varieties.


1996 ◽  
Vol 1 (1-2) ◽  
pp. 35-39 ◽  
Author(s):  
C. Kenneth Fan

Sign in / Sign up

Export Citation Format

Share Document