scholarly journals Constructing abelian surfaces for cryptography via Rosenhain invariants

2014 ◽  
Vol 17 (A) ◽  
pp. 157-180 ◽  
Author(s):  
Craig Costello ◽  
Alyson Deines-Schartz ◽  
Kristin Lauter ◽  
Tonghai Yang

AbstractThis paper presents an algorithm to construct cryptographically strong genus $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2$ curves and their Kummer surfaces via Rosenhain invariants and related Kummer parameters. The most common version of the complex multiplication (CM) algorithm for constructing cryptographic curves in genus 2 relies on the well-studied Igusa invariants and Mestre’s algorithm for reconstructing the curve. On the other hand, the Rosenhain invariants typically have much smaller height, so computing them requires less precision, and in addition, the Rosenhain model for the curve can be written down directly given the Rosenhain invariants. Similarly, the parameters for a Kummer surface can be expressed directly in terms of rational functions of theta constants. CM-values of these functions are algebraic numbers, and when computed to high enough precision, LLL can recognize their minimal polynomials. Motivated by fast cryptography on Kummer surfaces, we investigate a variant of the CM method for computing cryptographically strong Rosenhain models of curves (as well as their associated Kummer surfaces) and use it to generate several example curves at different security levels that are suitable for use in cryptography.

2004 ◽  
Vol 47 (3) ◽  
pp. 398-406
Author(s):  
David McKinnon

AbstractLet V be a K3 surface defined over a number field k. The Batyrev-Manin conjecture for V states that for every nonempty open subset U of V, there exists a finite set ZU of accumulating rational curves such that the density of rational points on U − ZU is strictly less than the density of rational points on ZU. Thus, the set of rational points of V conjecturally admits a stratification corresponding to the sets ZU for successively smaller sets U.In this paper, in the case that V is a Kummer surface, we prove that the Batyrev-Manin conjecture for V can be reduced to the Batyrev-Manin conjecture for V modulo the endomorphisms of V induced by multiplication by m on the associated abelian surface A. As an application, we use this to show that given some restrictions on A, the set of rational points of V which lie on rational curves whose preimages have geometric genus 2 admits a stratification of Batyrev-Manin type.


2011 ◽  
Vol 202 ◽  
pp. 127-143
Author(s):  
Afsaneh Mehran

AbstractThe aim of this paper is to describe the geometry of the generic Kummer surface associated to a (1, 2)-polarized abelian surface. We show that it is the double cover of a weak del Pezzo surface and that it inherits from the del Pezzo surface an interesting elliptic fibration with twelve singular fibers of typeI2.


2011 ◽  
Vol 202 ◽  
pp. 127-143 ◽  
Author(s):  
Afsaneh Mehran

AbstractThe aim of this paper is to describe the geometry of the generic Kummer surface associated to a (1, 2)-polarized abelian surface. We show that it is the double cover of a weak del Pezzo surface and that it inherits from the del Pezzo surface an interesting elliptic fibration with twelve singular fibers of type I2.


1936 ◽  
Vol 32 (3) ◽  
pp. 342-354 ◽  
Author(s):  
H. F. Baker

In 1907 Enriques and Severi published an extensive and fascinating account of hyperelliptic surfaces. In general a hyperelliptic surface is that expressed by the necessary relation connecting three meromorphic functions of two variables which have four columns of periods. Such functions arise naturally by associating the two variables, in accordance with Jacobi's inversion problem for hyperelliptic integrals of genus 2, with a pair of points of a hyperelliptic curve. When the primitive periods of the functions are those arising for the curve, and the set of three functions chosen is representative, in the sense that only one pair of (incongruent) values of the variables arises for given values of the functions, the surface is called by Enriques and Severi a Jacobian surface; but, if several sets of (incongruent) values of the variables arise for given values of the functions, say r sets, the surface is said to be of rank r. For example, when the three functions are all even, to each set of values of these there belong not only the values u, v of the variables, but also the values −u, − v, and r is thus even, being 2 at least, as in the case of the Kummer surface. In the paper referred to, many cases in which r > 1, corresponding to particular hyperelliptic curves possessing involutions of order r, are worked out. In general the method followed consists in arguing, from the character of the associated group of order r, to the character and equation of the hyperelliptic surface Φ of rank r; and from this the Jacobian surface F is inferred upon which there exists an involution of sets of r points, the surface Φ being the representation of this involution. The argumentation is always beautiful, but often not very brief. The hyperelliptic surfaces for which the primitive periods of the functions are not those of a hyperelliptic curve are also shown in the paper to arise from involutions on the Jacobian surface; with these I am not here concerned.


2013 ◽  
Vol 479-480 ◽  
pp. 855-860
Author(s):  
Chii Huei Yu

This paper uses the mathematical software Maple as the auxiliary tool to study the differential problem of four types of rational functions. We can obtain the closed forms of any order derivatives of these rational functions by using binomial theorem. On the other hand, we propose four examples to do calculation practically. The research methods adopted in this study involved finding solutions through manual calculations and verifying these solutions by using Maple. This type of research method not only allows the discovery of calculation errors, but also helps modify the original directions of thinking from manual and Maple calculations. For this reason, Maple provides insights and guidance regarding problem-solving methods.


2011 ◽  
Vol 148 (3) ◽  
pp. 281-308
Author(s):  
Karl Dilcher ◽  
Rob Noble ◽  
Chris Smyth

1978 ◽  
Vol 26 (1) ◽  
pp. 31-45 ◽  
Author(s):  
J. H. Loxton ◽  
A. J. van der Poorten

AbstractWe consider algebraic independence properties of series such as We show that the functions fr(z) are algebraically independent over the rational functions Further, if αrs (r = 2, 3, 4, hellip; s = 1, 2, 3, hellip) are algebraic numbers with 0 < |αrs|, we obtain an explicit necessary and sufficient condition for the algebraic independence of the numbers fr(αrs) over the rationals.


Author(s):  
Hideto Nakashima

AbstractIn this paper, we give necessary and sufficient conditions for a homogeneous cone Ω to be symmetric in two ways. One is by using the multiplier matrix of Ω, and the other is in terms of the basic relative invariants of Ω. In the latter approach, we need to show that the real parts of certain meromorphic rational functions obtained by the basic relative invariants are always positive on the tube domains over Ω. This is a generalization of a result of Ishi and Nomura [Math. Z. 259 (2008), 604–674].


2017 ◽  
Vol 11 (1) ◽  
pp. 39-76 ◽  
Author(s):  
Jeffrey Achter ◽  
Everett Howe

2015 ◽  
Vol 18 (1) ◽  
pp. 170-197 ◽  
Author(s):  
Reinier Bröker ◽  
Everett W. Howe ◽  
Kristin E. Lauter ◽  
Peter Stevenhagen

AbstractWe study the problem of efficiently constructing a curve $C$ of genus $2$ over a finite field $\mathbb{F}$ for which either the curve $C$ itself or its Jacobian has a prescribed number $N$ of $\mathbb{F}$-rational points.In the case of the Jacobian, we show that any ‘CM-construction’ to produce the required genus-$2$ curves necessarily takes time exponential in the size of its input.On the other hand, we provide an algorithm for producing a genus-$2$ curve with a given number of points that, heuristically, takes polynomial time for most input values. We illustrate the practical applicability of this algorithm by constructing a genus-$2$ curve having exactly $10^{2014}+9703$ (prime) points, and two genus-$2$ curves each having exactly $10^{2013}$ points.In an appendix we provide a complete parametrization, over an arbitrary base field $k$ of characteristic neither two nor three, of the family of genus-$2$ curves over $k$ that have $k$-rational degree-$3$ maps to elliptic curves, including formulas for the genus-$2$ curves, the associated elliptic curves, and the degree-$3$ maps.Supplementary materials are available with this article.


Sign in / Sign up

Export Citation Format

Share Document