scholarly journals Resistance exercise training and circulatory responses to feeding and skeletal muscle protein anabolism in older men

2015 ◽  
Vol 593 (17) ◽  
pp. 3771-3772
Author(s):  
Sara Y. Oikawa ◽  
Kirsten E. Bell ◽  
Amy J. Hector
2015 ◽  
Vol 593 (12) ◽  
pp. 2721-2734 ◽  
Author(s):  
Bethan E. Phillips ◽  
Philip J. Atherton ◽  
Krishna Varadhan ◽  
Marie C. Limb ◽  
Daniel J. Wilkinson ◽  
...  

Steroids ◽  
2011 ◽  
Vol 76 (1-2) ◽  
pp. 183-192 ◽  
Author(s):  
Juha P. Ahtiainen ◽  
Juha J. Hulmi ◽  
William J. Kraemer ◽  
Maarit Lehti ◽  
Kai Nyman ◽  
...  

1995 ◽  
Vol 268 (2) ◽  
pp. E268-E276 ◽  
Author(s):  
K. E. Yarasheski ◽  
J. J. Zachwieja ◽  
J. A. Campbell ◽  
D. M. Bier

The purpose of this study was to determine whether growth hormone (GH) administration enhances the muscle protein anabolism associated with heavy-resistance exercise training in older men. Twenty-three healthy, sedentary men (67 +/- 1 yr) with low serum insulin-like growth factor I levels followed a 16-wk progressive resistance exercise program (75-90% max strength, 4 days/wk) after random assignment to either a GH (12.5-24 micrograms.kg-1.day-1; n = 8) or placebo (n = 15) group. Fat-free mass (FFM) and total body water increased more in the GH group. Whole body protein synthesis and breakdown rates increased in the GH group after treatment. However, increments in vastus lateralis muscle protein synthesis rate, urinary creatinine excretion, and training-specific isotonic and isokinetic muscle strength were similar in both groups, while 24-h urinary 3-methylhistidine excretion was unchanged after treatment. These observations suggest that resistance exercise training improved muscle strength and anabolism in older men, but these improvements were not enhanced when exercise was combined with daily GH administration. The greater increase in FFM with GH treatment may have been due to an increase in noncontractile protein and fluid retention.


1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


2019 ◽  
Vol 7 (12) ◽  
Author(s):  
Roldan M. de Guia ◽  
Marianne Agerholm ◽  
Thomas S. Nielsen ◽  
Leslie A. Consitt ◽  
Ditte Søgaard ◽  
...  

2001 ◽  
Vol 11 (s1) ◽  
pp. S150-S163 ◽  
Author(s):  
Peter A. Farrell

Skeletal muscle proteins are constantly being synthesized and degraded, and the net balance between synthesis and degradation determines the resultant muscle mass. Biochemical pathways that control protein synthesis are complex, and the following must be considered: gene transcription, mRNA splicing, and transport to the cytoplasm; specific amino acyl-tRNA, messenger (mRNA), ribosomal (rRNA) availability; amino acid availability within the cell; the hormonal milieu; rates of mRNA translation; packaging in vesicles for some types of proteins; and post-translational processing such as glycation and phosphorylation/dephosphorylation. Each of these processes is responsive to the need for greater or lesser production of new proteins, and many states such as sepsis, uncontrolled diabetes, prolonged bed-rest, aging, chronic alcohol treatment, and starvation cause marked reductions in rates of skeletal muscle protein synthesis. In contrast, acute and chronic resistance exercise cause elevations in rates of muscle protein synthesis above rates found in nondiseased rested organisms, which are normally fed. Resistance exercise may be unique in this capacity. This chapter focuses on studies that have used exercise to elucidate mechanisms that explain elevations in rates of protein synthesis. Very few studies have investigated the effects of aging on these mechanisms; however, the literature that is available is reviewed.


Sign in / Sign up

Export Citation Format

Share Document