scholarly journals Potentiating α 2 subunit containing perisomatic GABA A receptors protects against seizures in a mouse model of Dravet syndrome

2019 ◽  
Vol 597 (16) ◽  
pp. 4293-4307 ◽  
Author(s):  
Toshihiro Nomura ◽  
Nicole A. Hawkins ◽  
Jennifer A. Kearney ◽  
Alfred L. George ◽  
Anis Contractor
Keyword(s):  
2020 ◽  
Vol 103 ◽  
pp. 106842
Author(s):  
Dilara Bahceci ◽  
Lyndsey Leigh Anderson ◽  
Cassandra Veronica Occelli Hanbury Brown ◽  
Cilla Zhou ◽  
Jonathon Carl Arnold

Epilepsia ◽  
2021 ◽  
Author(s):  
Nina Miljanovic ◽  
Roelof Maarten van Dijk ◽  
Verena Buchecker ◽  
Heidrun Potschka

2021 ◽  
Vol 12 ◽  
Author(s):  
Vaishali Satpute Janve ◽  
Lyndsey L. Anderson ◽  
Dilara Bahceci ◽  
Nicole A. Hawkins ◽  
Jennifer A. Kearney ◽  
...  

Cannabidiol has been approved for the treatment of drug-resistant childhood epilepsies including Dravet syndrome (DS). Although the mechanism of anticonvulsant action of cannabidiol is unknown, emerging data suggests involvement of the transient receptor potential cation channel subfamily V member 1 (Trpv1). Pharmacological and genetic studies in conventional seizure models suggest Trpv1 is a novel anticonvulsant target. However, whether targeting Trpv1 is anticonvulsant in animal models of drug-resistant epilepsies is not known. Thus, we examined whether Trpv1 affects the epilepsy phenotype of the F1.Scn1a+/− mouse model of DS. We found that cortical Trpv1 mRNA expression was increased in seizure susceptible F1.Scn1a+/− mice with a hybrid genetic background compared to seizure resistant 129.Scn1a+/− mice isogenic on 129S6/SvEvTac background, suggesting Trpv1 could be a genetic modifier. Previous studies show functional loss of Trpv1 is anticonvulsant. However, Trpv1 selective antagonist SB-705498 did not affect hyperthermia-induced seizure threshold, frequency of spontaneous seizures or survival of F1.Scn1a+/− mice. Surprisingly, Trpv1 deletion had both pro- and anti-seizure effects. Trpv1 deletion did not affect hyperthermia-induced seizure temperature thresholds of F1.Scn1a+/−; Trpv1+/− at P14-16 but was proconvulsant at P18 as it reduced seizure temperature thresholds. Conversely, Trpv1 deletion did not alter the frequency of spontaneous seizures but reduced their severity. These results suggest that Trpv1 is a modest genetic modifier of spontaneous seizure severity in the F1.Scn1a+/− model of DS. However, the opposing pro- and anti-seizure effects of Trpv1 deletion and the lack of effects of Trpv1 inhibition suggest that Trpv1 is unlikely a viable anticonvulsant drug target in DS.


2019 ◽  
Vol 6 (8) ◽  
pp. 1566-1571 ◽  
Author(s):  
Jennifer C. Wong ◽  
Jacquelyn T. Thelin ◽  
Andrew Escayg
Keyword(s):  

2019 ◽  
Vol 82 (11) ◽  
pp. 3047-3055 ◽  
Author(s):  
Lyndsey L. Anderson ◽  
Ivan K. Low ◽  
Samuel D. Banister ◽  
Iain S. McGregor ◽  
Jonathon C. Arnold

2018 ◽  
Vol 28 ◽  
pp. S41 ◽  
Author(s):  
C. Alonso Gómez ◽  
V. Satta ◽  
J. Fernández-Ruiz ◽  
O. Sagredo
Keyword(s):  

2013 ◽  
Vol 22 (23) ◽  
pp. 4784-4804 ◽  
Author(s):  
Ikuo Ogiwara ◽  
Takuji Iwasato ◽  
Hiroyuki Miyamoto ◽  
Ryohei Iwata ◽  
Tetsushi Yamagata ◽  
...  

2014 ◽  
Vol 111 (30) ◽  
pp. E3139-E3148 ◽  
Author(s):  
C. Tai ◽  
Y. Abe ◽  
R. E. Westenbroek ◽  
T. Scheuer ◽  
W. A. Catterall

Sign in / Sign up

Export Citation Format

Share Document